417. Pacific Atlantic Water Flow

本文探讨了在一个由非负整数构成的矩阵中,如何找到可以同时流向太平洋和大西洋的网格坐标。通过深度优先搜索(DFS)和广度优先搜索(BFS),我们能够从矩阵的边缘开始遍历,标记那些水能流向两个海洋的位置。

Given an m x n matrix of non-negative integers representing the height of each unit cell in a continent, the "Pacific ocean" touches the left and top edges of the matrix and the "Atlantic ocean" touches the right and bottom edges.

Water can only flow in four directions (up, down, left, or right) from a cell to another one with height equal or lower.

Find the list of grid coordinates where water can flow to both the Pacific and Atlantic ocean.

Note:

  1. The order of returned grid coordinates does not matter.
  2. Both m and n are less than 150.

 

Example:

Given the following 5x5 matrix:

  Pacific ~   ~   ~   ~   ~ 
       ~  1   2   2   3  (5) *
       ~  3   2   3  (4) (4) *
       ~  2   4  (5)  3   1  *
       ~ (6) (7)  1   4   5  *
       ~ (5)  1   1   2   4  *
          *   *   *   *   * Atlantic

Return:

[[0, 4], [1, 3], [1, 4], [2, 2], [3, 0], [3, 1], [4, 0]] (positions with parentheses in above matrix).

 

Approach #1: C++. [DFS]

class Solution {
public:
    vector<pair<int, int>> pacificAtlantic(vector<vector<int>>& matrix) {
        if (matrix.size() == 0) return ans;
        
        int m = matrix.size();
        int n = matrix[0].size();
        
        visited.resize(m, vector<int>(n, 0));
        
        for (int i = 0; i < m; ++i) {
            dfs(i, 0, matrix, INT_MIN, 1);
            dfs(i, n-1, matrix, INT_MIN, 2);
        }
        
        for (int j = 0; j < n; ++j) {
            dfs(0, j, matrix, INT_MIN, 1);
            dfs(m-1, j, matrix, INT_MIN, 2);
        }
        
        return ans;
    }
    
private:
    vector<vector<int>> visited;
    vector<pair<int, int>> ans;
    
    void dfs(int i, int j, vector<vector<int>>& matrix, int pre, int lable) {
        if (i < 0 || i >= matrix.size() || j < 0 || j >= matrix[0].size() || 
            matrix[i][j] < pre || visited[i][j] == 3 || visited[i][j] == lable) 
            return ;
        
        visited[i][j] += lable;
        
        if (visited[i][j] == 3) ans.push_back({i, j});
        
        dfs(i+1, j, matrix, matrix[i][j], lable);
        dfs(i-1, j, matrix, matrix[i][j], lable);
        dfs(i, j+1, matrix, matrix[i][j], lable);
        dfs(i, j-1, matrix, matrix[i][j], lable);
    }
};

  

Analysis:

In this solution we travel start at the edges, from difference edges with difference lable represent the difference ocean. if visited[i][j]'s value equal to 3, this illustrate that at this point the water can flow both the Pacific and Atlantic ocean.

 

Approach #2: Java. [BFS]

class Solution {
    int[][] dirs = new int[][] {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
    public List<int[]> pacificAtlantic(int[][] matrix) {
        List<int[]> res = new LinkedList<>();
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) 
            return res;
        
        int n = matrix.size;
        int m = matrix[0].size;
        
        boolean[][] pacific = new boolean[n][m];
        boolean[][] atlantic = new boolean[n][m];
        Queue<int[]> pQueue = new LinkedList<>();
        Queue<int[]> aQueue = new LinkedList<>();
        
        for (int i = 0; i < n; ++i) {
            pQueue.offer(new int[]{i, 0});
            aQueue.offer(new int[]{i, m-1});
            pacific[i][0] = true;
            atlantic[i][m-1] = true;
        }
        
        for (int i = 0; i < m; ++i) {
            pQueue.offer(new int[]{0, i});
            aQueue.offer(new int[]{n-1, i});
            pacific[0][i] = true;
            atlantic[n-1][i] = true;
        }
        
        bfs(matrix, pQueue, pacific);
        bfs(matrix, aQueue, atlantic);
        
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
                if (pacific[i][j] && atlantic[i][j]) {
                    res.add(new int[]{i, j});
                }
            }
        }
        
        return res;
    }
    
    public void bfs(int[][] matrix, Queue<int[]> queue, boolean[][] visited) {
        int n = matrix.length;
        int m = matrix[0].length;
        
        while (!queue.isEmpty()) {
            int[] cur = queue.poll();
            for (int[] d : dirs) {
                int x = cur[0] + d[0];
                int y = cur[1] + d[1];
                
                if (x < 0 || x > n-1 || y < 0 || y > m-1 || visited[x][y] || matrix[x][y] < matrix[cur[0]][cur[1]])
                    continue;
                
                visited[x][y] = true;
                queue.offer(new int[]{x, y});
            }
        }
    }
}

  

Approach #3: Python. 

class Solution(object):
    def pacificAtlantic(self, matrix):
        """
        :type matrix: List[List[int]]
        :rtype: List[List[int]]
        """
        if not matrix: return []
        
        self.directions = [(1, 0), (-1, 0), (0, 1), (0, -1)]
        
        m = len(matrix)
        n = len(matrix[0])
        
        p_visited = [[False for _ in range(n)] for _ in range(m)]
        a_visited = [[False for _ in range(n)] for _ in range(m)]
        
        result = []
        
        for i in range(m):
            self.dfs(matrix, i, 0, p_visited, m, n)
            self.dfs(matrix, i, n-1, a_visited, m, n)
            
        for i in range(n):
            self.dfs(matrix, 0, i, p_visited, m, n)
            self.dfs(matrix, m-1, i, a_visited, m, n)
            
        for i in range(m):
            for j in range(n):
                if p_visited[i][j] and a_visited[i][j]:
                    result.append([i, j])
                    
        return result
    
    def dfs(self, matrix, i, j, visited, m, n):
        visited[i][j] = True
        
        for dir in self.directions:
            x, y = i + dir[0], j + dir[1]
            if x < 0 or x >= m or y < 0 or y >= n or visited[x][y] or matrix[x][y] < matrix[i][j]:
                continue
            self.dfs(matrix, x, y, visited, m, n)
            

  

 

转载于:https://www.cnblogs.com/ruruozhenhao/p/10125141.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值