用bitset优化,要不然n^3肯定超时
消元过程中有几点需要注意,找到最大元后break,保证题目中所说的K最小
如果有自由元说明解很多,直接返回
#include <bitset>
#include <cstdio>
#define N 2050
#define max(x, y) ((x) > (y) ? (x) : (y))
int n, m, ans;
std::bitset <N> s[N];
char S[N][N];
inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
}
inline bool Gauss()
{
int i, j, k;
for(j = 1; j <= n; j++)
{
k = j;
for(i = j; i <= m; i++)
if(s[i][j])
{
k = i;
ans = max(ans, i);
break;
}
if(!s[k][j]) return 0;
if(k != j) swap(s[k], s[j]);
for(i = j + 1; i <= m; i++)
if(s[i][j])
s[i] ^= s[j];
}
for(i = n; i >= 1; i--)
for(j = i + 1; j <= n; j++)
s[i][n + 1] = s[i][n + 1] ^ (s[i][j] * s[j][n + 1]);
}
int main()
{
int i, j, x;
n = read();
m = read();
for(i = 1; i <= m; i++)
{
scanf("%s", S[i] + 1);
for(j = 1; j <= n; j++)
s[i][j] = S[i][j] - '0';
s[i][n + 1] = read();
}
if(Gauss())
{
printf("%d\n", ans);
for(i = 1; i <= n; i++)
if(s[i][n + 1]) puts("?y7M#");
else puts("Earth");
}
else puts("Cannot Determine");
return 0;
}