2018 10-708 (CMU) Probabilistic Graphical Models {Lecture 22} [Applications in Computer Vision (cont...

本文探讨了变分自编码器(VAE)在处理图像数据时出现的模糊结果和模式崩溃问题,分析了L2损失可能导致的模糊结果,以及在解释潜在变量意义时遇到的困难。同时,提到了尝试通过增加模型复杂度如全模型CRF来改善结果,但随之而来的计算成本问题。文章还讨论了如何通过不同类型的核函数如平滑核和外观核来衡量局部相似性和特征相似性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

take log to Normal distribution, it's L2 loss, which might be the cause of the blurry results of VAE

interpreting the meaning of latent vars is difficult

 

 

like a stretching: stretch left ones to more left and right ones to more right

 

 

 

 

 

 

 

 

 

 

 

we cant really tell which animal is exactly. seems like they are combinations of different animals.

mode collaspe is a problem that hasn't been resolved yet.

 

three eyes... => counting issues 

 

 

 

 


 

 

 

 

 

 

larger model (fully modelled CRF has much better results, but meanwhile lead to the much more computational cost) 

 

 

 

 

smooth kernel: local similarity

apperaance kernel: location similarity and feature similarity

so ususlly w1 > w2 

 

 

 

 

do the low-pass filtering and simplize it by convolution

 

 

a moving kernel

 

 

0 iteration: from an unary classifier

10 iteration: through CRF

 

 

 

 

 

 

 

 

 

 

 

转载于:https://www.cnblogs.com/ecoflex/p/10265099.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值