[物理学与PDEs]第1章习题9 磁偶极矩的极限矢势

本文探讨了在电流强度无限增大而环形面积趋向于零的情况下,磁偶极矩产生的磁场矢势的计算方法。利用Stokes公式进行了推导,并最终得到了矢势的具体表达式。

设在发现为 ${\bf n}$ 的平面上, 有一电流强度为 $I$ 的环形电流, 其方向与 ${\bf n}$ 成右手系. 又设该环形电流所围的面积为 $S_0$, 则 $$\bex {\bf m}=IS_0{\bf n} \eex$$ 称为该环形电流的磁偶极矩. 试证明: 当 $S_0\to0$ (环收缩到一点), $I\to+\infty$, 但 ${\bf n}$ 和 $m=IS_0$ 保持不变时, 由该磁偶极矩产生的磁场的矢势为 $$\bex {\bf A}(P)=-\cfrac{\mu_0}{4\pi}{\bf m}\times \n_P\cfrac{1}{r_{OP}}, \eex$$ 其中 $\n_P$ 表示对 $P$ 点的梯度.

 

证明: 由 (8. 51), $$\beex \bea {\bf A}(P)&=\lim \cfrac{\mu_0}{4\pi}\int_\Omega \cfrac{{\bf j}(P')}{r_{P'P}}\rd V_{P'}\\ &=\lim \cfrac{\mu_0}{4\pi} \int_l \cfrac{{\bf j}(P')}{r_{P'P}}\rd l\quad \sex{l:\mbox{ 环形}}\\ &=\lim \cfrac{\mu_0I}{4\pi}\int_l \cfrac{\rd {\bf l}}{r_{P'P}}\\ &=\lim \cfrac{\mu_0I}{4\pi}\int_{S_0} {\bf n}\rd S\times \n_{P'}\cfrac{1}{r_{P'P}}\quad\sex{\mbox{Stokes 公式}}\\ &=\cfrac{\mu_0I}{4\pi}\int_{S_0} {\bf n}\rd S\times \n_O\cfrac{1}{r_{OP}}\\ &=-\cfrac{\mu_0IS_0}{4\pi}{\bf n}\times \n_P\cfrac{1}{r_{OP}}\\ &=-\cfrac{\mu_0}{4\pi}{\bf m}\times \n_P\cfrac{1}{r_{OP}}. \eea \eeex$$

 

转载于:https://www.cnblogs.com/zhangzujin/p/3645528.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值