codeforces#839 B Game of the Rows 思维,贪心

本文介绍了一个关于军队分配的问题,目标是在限定条件下将不同组别的士兵分配到飞机座位上,确保来自不同组的士兵不会坐在相邻座位。文章详细阐述了解决方案,并通过示例说明了具体操作。

B. Game of the Rows
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Daenerys Targaryen has an army consisting of k groups of soldiers, the i-th group contains ai soldiers. She wants to bring her army to the other side of the sea to get the Iron Throne. She has recently bought an airplane to carry her army through the sea. The airplane has nrows, each of them has 8 seats. We call two seats neighbor, if they are in the same row and in seats {1, 2}{3, 4}{4, 5}{5, 6} or {7, 8}.

A row in the airplane

Daenerys Targaryen wants to place her army in the plane so that there are no two soldiers from different groups sitting on neighboring seats.

Your task is to determine if there is a possible arranging of her army in the airplane such that the condition above is satisfied.

Input

The first line contains two integers n and k (1 ≤ n ≤ 100001 ≤ k ≤ 100) — the number of rows and the number of groups of soldiers, respectively.

The second line contains k integers a1, a2, a3, ..., ak (1 ≤ ai ≤ 10000), where ai denotes the number of soldiers in the i-th group.

It is guaranteed that a1 + a2 + ... + ak ≤ 8·n.

Output

If we can place the soldiers in the airplane print "YES" (without quotes). Otherwise print "NO" (without quotes).

You can choose the case (lower or upper) for each letter arbitrary.

Examples
input
2 2
5 8
output
YES
input
1 2
7 1
output
NO
input
1 2
4 4
output
YES
input
1 4
2 2 1 2
output
YES
Note

In the first sample, Daenerys can place the soldiers like in the figure below:

In the second sample, there is no way to place the soldiers in the plane since the second group soldier will always have a seat neighboring to someone from the first group.

In the third example Daenerys can place the first group on seats (1, 2, 7, 8), and the second group an all the remaining seats.

In the fourth example she can place the first two groups on seats (1, 2) and (7, 8), the third group on seats (3), and the fourth group on seats (5, 6).


【题意】

n 行  k组,

输入k 组数据

问 k 组人能否被安排下, 而 这k 组人不相邻


【思路】

 一行8 个座位  可以分为  2 座 和 4  座

n行 2 座 为 2n  四座为 n


对于 k组数据 可以  把每组 人 分成  4+2+1 这样的  可以为0

先 处理 4 座 在处理2 座 最后处理 1 个人的  

先把所有 4 座的 处理掉 剩下的  4座 就可以 座2 个人 或者  1 个人 或者 2 +1 人 不相邻


【代码实现】

//#include <bits/stdc++.h>
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <cmath>
#include <math.h>
#include <cstring>
#include <string>
#include <queue>
#include <deque>
#include <stack>
#include <stdlib.h>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <vector>
#define mem(a,b) memset(a,b,sizeof(a))
#define findx(x) lower_bound(b+1,b+1+bn,x)-b
#define FIN      freopen("input.txt","r",stdin)
#define FOUT     freopen("output.txt","w",stdout)
#define S1(n)    scanf("%d",&n)
#define SL1(n)   scanf("%I64d",&n)
#define S2(n,m)  scanf("%d%d",&n,&m)
#define SL2(n,m)  scanf("%I64d%I64d",&n,&m)
#define Pr(n)     printf("%d\n",n)
#define lson rt << 1, l, mid
#define rson rt << 1|1, mid + 1, r
#define  FI(n) IO::read(n)
#define  Be IO::begin()

using namespace std;
typedef long long ll;
const double PI=acos(-1);
const int INF=0x3f3f3f3f;
const double esp=1e-6;
const int maxn=2e6+5;
const int MAXN=5005;
const int MOD=1e9+7;
const int mod=1e9+7;
int dir[5][2]={0,1,0,-1,1,0,-1,0};

namespace IO {
	const int MT = 5e7;
	char buf[MT]; int c,sz;
	void begin(){
		c = 0;
		sz = fread(buf, 1, MT, stdin);//一次性输入
	}
	template<class T>
	inline bool read(T &t){
		while( c < sz && buf[c] != '-' && ( buf[c]<'0' || buf[c] >'9')) c++;
		if( c>=sz) return false;
		bool flag = 0; if( buf[c]== '-') flag = 1,c++;
		for( t=0; c<=sz && '0' <=buf[c] && buf[c] <= '9'; c++ ) t= t*10 + buf[c]-'0';
		if(flag) t=-t;
		return true;
	}
}
ll inv[maxn*2];
inline void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){ x=1; y=0; d=a; }else{ ex_gcd(b,a%b,d,y,x); y-=x*(a/b);};}
inline ll gcd(ll a,ll b){ return b?gcd(b,a%b):a;}
inline ll exgcd(ll a,ll b,ll &x,ll &y){if(!b){x=1;y=0;return a;}ll ans=exgcd(b,a%b,x,y);ll temp=x;x=y;y=temp-a/b*y;return ans;}
inline ll lcm(ll a,ll b){ return b/gcd(a,b)*a;}
inline ll qpow(ll x,ll n){ll res=1;for(;n;n>>=1){if(n&1)res=(res*x)%MOD;x=(x*x)%MOD;}return res;}
inline ll inv_exgcd(ll a,ll n){ll d,x,y;ex_gcd(a,n,d,x,y);return d==1?(x+n)%n:-1;}
inline ll inv1(ll b){return b==1?1:(MOD-MOD/b)*inv1(MOD%b)%MOD;}
inline ll inv2(ll b){return qpow(b,MOD-2);}


int a[MAXN];
int main()
{
    int n,k;
    int s2,s4;
    while(~scanf("%d %d",&n,&k))
    {
        for(int i=1;i<=k;i++)
        {
            scanf("%d",&a[i]);
        }
        s2= 2*n;
        s4=n;
        int flag=1;

        for(int i=1;i<=k;i++)
        {
            int te= min(s4,a[i]/4); // 处理4
            s4-= te;
            a[i]-= te*4;
        }
        s2+=s4;
        for(int i=1;i<=k;i++)
        {
            int te=min(s2,a[i]/2);
            //cout<<" te " <<  te<<endl;
            s2-=te;
            a[i]-= te*2;
        }
        int s1=s2+s4;
        //cout<<s2<<endl;
        for(int i=1;i<=k;i++)
        {
            s1-=a[i];
          //  cout<<s1<<endl;
        }
        if(s1>=0)
            printf("YES\n");
        else
            printf("NO\n");
    }
    return 0;
}



\123

转载于:https://www.cnblogs.com/sizaif/p/9078418.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值