HDU3018 几笔画(非1笔)

本文介绍了一道关于AntTrip旅行的算法题目,旨在通过最少的团队数量遍历蚂蚁王国的所有道路。文章提供了一种解决方案,利用并查集来确定连通组件,并计算每个连通组件中奇数度节点的数量,进而得出所需团队的最小数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ant Trip

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2010    Accepted Submission(s): 782


Problem Description
Ant Country consist of N towns.There are M roads connecting the towns.

Ant Tony,together with his friends,wants to go through every part of the country.

They intend to visit every road , and every road must be visited for exact one time.However,it may be a mission impossible for only one group of people.So they are trying to divide all the people into several groups,and each may start at different town.Now tony wants to know what is the least groups of ants that needs to form to achieve their goal.
 

 

Input
Input contains multiple cases.Test cases are separated by several blank lines. Each test case starts with two integer N(1<=N<=100000),M(0<=M<=200000),indicating that there are N towns and M roads in Ant Country.Followed by M lines,each line contains two integers a,b,(1<=a,b<=N) indicating that there is a road connecting town a and town b.No two roads will be the same,and there is no road connecting the same town.
 

 

Output
For each test case ,output the least groups that needs to form to achieve their goal.
 

 

Sample Input
3 3 1 2 2 3 1 3 4 2 1 2 3 4
 

 

Sample Output
1 2
Hint
New ~~~ Notice: if there are no road connecting one town ,tony may forget about the town. In sample 1,tony and his friends just form one group,they can start at either town 1,2,or 3. In sample 2,tony and his friends must form two group.
 

 

Source
 
 
一个连通图不会有奇数个奇数度顶点,画一画图可以知道,假如一个连通图所有点度数为偶数,答案为1,否则就是奇数度顶点的一半,累加求和。
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
const  int maxn=100005;
int father[maxn];
int indegree[maxn];
int n,m;
int a[maxn];
void init(){
    for(int i=1;i<=n;i++)
        father[i]=i;
}
int find(int u){
   if(father[u]!=u)
    father[u]=find(father[u]);
   return father[u];
}
void Union(int x,int y){
     int t1=find(x);
     int t2=find(y);
     if(t1!=t2)
        father[t1]=t2;
}
int main(){
   while(scanf("%d%d",&n,&m)!=EOF){
        init();
      // memset(father,0,sizeof(father));
       memset(indegree,0,sizeof(indegree));
       memset(a,-1,sizeof(a));
       for(int i=1;i<=m;i++){
           int u,v;
          scanf("%d%d",&u,&v);
          indegree[u]++;
          indegree[v]++;
           Union(u,v);
       }

       for(int i=1;i<=n;i++){
           int t=find(i);
           if(a[t]==-1&&indegree[i]>0)
            a[t]=0;
           if(indegree[i]&1)
            a[t]++;
       }
int ans=0;
       for(int i=1;i<=n;i++){
        if(a[i]==0)
            ans++;
        else if(a[i]>0)
            ans+=a[i]/2;
       }
       printf("%d\n",ans);
   }
   return 0;
}

 

转载于:https://www.cnblogs.com/13224ACMer/p/4714812.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值