Trapping Rain Water

本文介绍了一个算法,用于计算给定高度数组表示的地形中,在雨后能够储存的雨水量。通过找到每个元素左侧和右侧的最大高度,算法计算了能够储存的雨水量。实现效率高,运行速度快。

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining. 

For example, 
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.

The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!

 

Analyse: The water can be trapped equals to the min(left[i], right[i]) - height[i], whereas left[i] and right[i] is the largest number of the left and right part of the number. 

Runtime: 8ms.

 1 class Solution {
 2 public:
 3     int trap(vector<int>& height) {
 4         int n = height.size();
 5         if(n <= 1) return 0;
 6         
 7         int *left = new int [n];
 8         int max = height[0];
 9         for(int i = 1; i < n - 1; i++){//find the largest of the left of a element
10             left[i] = max;
11             if(height[i] > max) 
12                 max = height[i];
13         }
14         max = height[n - 1];
15         int result = 0;
16         for(int j = n - 2; j >= 0; j--){
17             int diff = min(max, left[j]) - height[j]; //the water trapped at index i
18             if(diff > 0) 
19                 result += diff;
20             if(height[j] > max) 
21                 max = height[j];
22         }
23         return result;
24     }
25 };

 

转载于:https://www.cnblogs.com/amazingzoe/p/4783934.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值