A. New Building for SIS Codeforce

本文介绍了一种算法,用于计算在特定条件下两座塔之间的最短行走时间。该算法考虑了不同楼层间的通行限制,并提供了实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are looking at the floor plan of the Summer Informatics School's new building. You were tasked with SIS logistics, so you really care about travel time between different locations: it is important to know how long it would take to get from the lecture room to the canteen, or from the gym to the server room.

The building consists of n towers, h floors each, where the towers are labeled from 1 to n, the floors are labeled from 1 to h. There is a passage between any two adjacent towers (two towers i and i + 1 for all i1 ≤ i ≤ n - 1) on every floor x, where a ≤ x ≤ b. It takes exactly one minute to walk between any two adjacent floors of a tower, as well as between any two adjacent towers, provided that there is a passage on that floor. It is not permitted to leave the building.

The picture illustrates the first example.

You have given k pairs of locations (ta, fa), (tb, fb): floor fa of tower ta and floor fb of tower tb. For each pair you need to determine the minimum walking time between these locations.

Input

The first line of the input contains following integers:

  • n: the number of towers in the building (1 ≤ n ≤ 108),
  • h: the number of floors in each tower (1 ≤ h ≤ 108),
  • a and b: the lowest and highest floor where it's possible to move between adjacent towers (1 ≤ a ≤ b ≤ h),
  • k: total number of queries (1 ≤ k ≤ 104).

Next k lines contain description of the queries. Each description consists of four integers tafatbfb (1 ≤ ta, tb ≤ n1 ≤ fa, fb ≤ h). This corresponds to a query to find the minimum travel time between fa-th floor of the ta-th tower and fb-th floor of the tb-th tower.

Output

For each query print a single integer: the minimum walking time between the locations in minutes.

Example
input
Copy
3 6 2 3 3
1 2 1 3
1 4 3 4
1 2 2 3
output
Copy
1
4
2
一道特别简单的题
题意:从一个塔的某一层到另一个塔的某一层,需要的最短时间。条件:每上下一层都要一秒,每从一个塔去临近的塔需要一秒,每个塔去临近的塔只有a-b层有通道去。 
思路:分类讨论一下。 
1、当出发地和目的地是同一个塔:abs(fa-fb) 
2.1、当出发地和目的地不同塔:但是有一个在有通道范围内,或者两者都不在范围内但一个<=a一个>=b:abs(ta-tb)+abs(fa-fb) 
2.2、当出发和目的地楼层都<=a:abs(ta-tb)+abs(fa-a)+abs(fb-a) 
2.3、当出发地和目的地楼层都>=b:abs(ta-tb)+abs(fa-b)+abs(fb-b)
此人的思维:https://blog.youkuaiyun.com/miranda_ymz/article/details/81603271
但是我不喜欢此人的代码。
if(ta==tb)
            cout<<abs(fa-fb)<<endl;
View Code

这是第一部分“当出发地和目的地是同一个塔”

else
        {
            if(fa>=b&&fb>=b)
                cout<<abs(ta-tb)+(fb-b)+(fa-b)<<endl;
            else if(fa<=a&&fb<=a)
                cout<<abs(ta-tb)+(a-fa)+(a-fb)<<endl;
            else
                cout<<abs(ta-tb)+abs(fa-fb)<<endl;
        }
View Code

这是第二部分,你只需要控制先判断同在b之上和同在a之下,剩余的就是一个大于b或者小于a,另一个在a和b之间。(不用那么多的判断)

上代码

 1 #include<stdio.h>
 2 #include<iostream>
 3 #include<algorithm>
 4 using namespace std;
 5 int main()
 6 {
 7     int n,h,a,b,k;
 8     cin>>n>>h>>a>>b>>k;
 9     while(k--)
10     {
11         int ta,tb,fa,fb;
12         cin>>ta>>fa>>tb>>fb;
13         if(ta==tb)
14             cout<<abs(fa-fb)<<endl;
15         else
16         {
17             if(fa>=b&&fb>=b)
18                 cout<<abs(ta-tb)+(fb-b)+(fa-b)<<endl;
19             else if(fa<=a&&fb<=a)
20                 cout<<abs(ta-tb)+(a-fa)+(a-fb)<<endl;
21             else
22                 cout<<abs(ta-tb)+abs(fa-fb)<<endl;
23         }
24     }
25     return 0;
26 }
View Code

 

转载于:https://www.cnblogs.com/luhongkai/p/9509789.html

资源下载链接为: https://pan.quark.cn/s/67c535f75d4c 在机器人技术中,轨迹规划是实现机器人从一个位置平稳高效移动到另一个位置的核心环节。本资源提供了一套基于 MATLAB 的机器人轨迹规划程序,涵盖了关节空间和笛卡尔空间两种规划方式。MATLAB 是一种强大的数值计算与可视化工具,凭借其灵活易用的特点,常被用于机器人控制算法的开发与仿真。 关节空间轨迹规划主要关注机器人各关节角度的变化,生成从初始配置到目标配置的连续路径。其关键知识点包括: 关节变量:指机器人各关节的旋转角度或伸缩长度。 运动学逆解:通过数学方法从末端执行器的目标位置反推关节变量。 路径平滑:确保关节变量轨迹连续且无抖动,常用方法有 S 型曲线拟合、多项式插值等。 速度和加速度限制:考虑关节的实际物理限制,确保轨迹在允许的动态范围内。 碰撞避免:在规划过程中避免关节与其他物体发生碰撞。 笛卡尔空间轨迹规划直接处理机器人末端执行器在工作空间中的位置和姿态变化,涉及以下内容: 工作空间:机器人可到达的所有三维空间点的集合。 路径规划:在工作空间中找到一条从起点到终点的无碰撞路径。 障碍物表示:采用二维或三维网格、Voronoi 图、Octree 等数据结构表示工作空间中的障碍物。 轨迹生成:通过样条曲线、直线插值等方法生成平滑路径。 实时更新:在规划过程中实时检测并避开新出现的障碍物。 在 MATLAB 中实现上述规划方法,可以借助其内置函数和工具箱: 优化工具箱:用于解决运动学逆解和路径规划中的优化问题。 Simulink:可视化建模环境,适合构建和仿真复杂的控制系统。 ODE 求解器:如 ode45,用于求解机器人动力学方程和轨迹执行过程中的运动学问题。 在实际应用中,通常会结合关节空间和笛卡尔空间的规划方法。先在关节空间生成平滑轨迹,再通过运动学正解将关节轨迹转换为笛卡
### Codeforces Problem or Contest 998 Information For the specific details on Codeforces problem or contest numbered 998, direct references were not provided within the available citations. However, based on similar structures observed in other contests such as those described where configurations often include constraints like `n` representing numbers of elements with defined ranges[^1], it can be inferred that contest or problem 998 would follow a comparable format. Typically, each Codeforces contest includes several problems labeled from A to F or beyond depending on the round size. Each problem comes with its own set of rules, input/output formats, and constraint descriptions. For instance, some problems specify conditions involving integer inputs for calculations or logical deductions, while others might involve more complex algorithms or data processing tasks[^3]. To find detailed information regarding contest or problem 998 specifically: - Visit the official Codeforces website. - Navigate through past contests until reaching contest 998. - Review individual problem statements under this contest for precise requirements and examples. Additionally, competitive programming platforms usually provide comprehensive documentation alongside community discussions which serve valuable resources when exploring particular challenges or learning algorithmic solutions[^2]. ```cpp // Example C++ code snippet demonstrating how contestants interact with input/output during competitions #include <iostream> using namespace std; int main() { int n; cin >> n; // Process according to problem statement specifics } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值