【RS】List-wise learning to rank with matrix factorization for collaborative filtering - 结合列表启发排序和矩阵分解...

本文介绍了一种结合矩阵分解与基于列表排序学习的协同过滤方法ListRank-MF,它通过最小化训练列表与输出列表间的不确定性损失函数进行推荐。ListRank-MF与观测评分呈线性关系,实验显示其优于基于项目的协同推荐和CoFiRank。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【论文标题】List-wise learning to rank with matrix factorization for collaborative filtering   (RecSys '10  recsys.ACM )

【论文作者】

Yue ShiDelft University of Technology, Delft, Netherlands

Martha LarsonDelft University of Technology, Delft, Netherlands

Alan HanjalicDelft University of Technology, Delft, Netherlands

【论文链接】Paper (4-pages // Double column)

 

【注】基于 Pairwise 和 Listwise 的排序学习

【注】l2r约束优化函数的,  矩阵分解(MF)是主体。

 

【摘要】

  本论文提出了一种协同过滤的排序方法——ListRank-MF。该方法将一种基于列表的学习排序算法与矩阵分解 (MF) 相结合。排序列表上的 items 是通过最小化一个损失函数,该损失函数表示训练列表和输出列表之间的不确定性,输出列表由MF排序模型ListRank-MF生成。ListRank-MF具有低复杂度的优点,并且分析表明该损失函数与给定的用户-项目矩阵的观测评分成线性关系。我们还通过实验证明了 ListRank-MF的有效性,并将其与基于项目的协同推荐以及一种最新的协同排名方法 (CoFiRank) 进行了比较。

转载于:https://www.cnblogs.com/shenxiaolin/p/9720614.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值