HDU3342Legal or Not 拓扑排序

博客介绍了有向图判断是否成环的方法,若入度为0的点的个数等于总的点的个数则无环,若成环则输出NO,还给出了转载来源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  有向图判断是否成环  如果是环输出NO  

 

只要入度为0的点的个数 等于 总的点的个数则无环

#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define LL long long
#define REP(i,N)  for(int i=0;i<(N);i++)
#define CLR(A,v)  memset(A,v,sizeof A)
//////////////////////////////////
#define N  200
int in[N];
vector<int>edge[N];
int vis[N][N];

int main()
{
    int n,m;
    while(RII(n,m)==2&&n&&m)
    {
        while(m--)
        {
            int a,b;
            RII(a,b);
            if(!vis[a][b])
            {
            vis[a][b]=1;
            in[b]++;
            edge[a].push_back(b);
            }
        }
        queue<int>q;
        rep(i,0,n-1)
        if(!in[i])q.push(i);//后来还要取出来 所以这里cnt不用变
        int cnt=0;//计算入读为0的点
        while(!q.empty())
        {
            int u=q.front();q.pop();
            cnt++;
            if(edge[u].size())
            rep(i,0,edge[u].size()-1)
            {
                int v=edge[u][i];

                in[v]--;
                if(in[v]==0)q.push(v);
            }
        }
        if(cnt==n)printf("YES\n");
        else  printf("NO\n");
        CLR(vis,0);
        rep(i,0,n-1)
        in[i]=0,edge[i].clear();
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/bxd123/p/10558449.html

### HDU 3342 并查集 解题思路与实现 #### 题目背景介绍 HDU 3342 是一道涉及并查集的数据结构题目。该类问题通常用于处理动态连通性查询,即判断若干元素是否属于同一集合,并支持高效的合并操作。 #### 数据描述 给定一系列的人际关系网络中的朋友关系对 (A, B),表示 A 和 B 是直接的朋友。目标是通过这些已知的关系推断出所有人之间的间接友谊连接情况。具体来说,如果存在一条路径使得两个人可以通过中间人的链条相连,则认为他们是间接朋友。 #### 思路分析 为了高效解决此类问题,可以采用带按秩压缩启发式的加权快速联合-查找算法(Weighted Quick Union with Path Compression)。这种方法不仅能够有效地管理大规模数据集下的分组信息,而且可以在几乎常数时间内完成每次查找和联合操作[^1]。 当遇到一个新的友链 `(a,b)` 时: - 如果 a 和 b 已经在同一棵树下,则无需任何动作; - 否则,执行一次 `union` 操作来把它们所在的两棵不同的树合并成一棵更大的树; 最终目的是统计有多少个独立的“朋友圈”,也就是森林里的树木数量减一即是所需新建桥梁的数量[^4]。 #### 实现细节 以下是 Python 版本的具体实现方式: ```python class DisjointSet: def __init__(self, n): self.parent = list(range(n)) self.rank = [0] * n def find(self, p): if self.parent[p] != p: self.parent[p] = self.find(self.parent[p]) # 路径压缩 return self.parent[p] def union(self, p, q): rootP = self.find(p) rootQ = self.find(q) if rootP == rootQ: return # 按秩合并 if self.rank[rootP] > self.rank[rootQ]: self.parent[rootQ] = rootP elif self.rank[rootP] < self.rank[rootQ]: self.parent[rootP] = rootQ else: self.parent[rootQ] = rootP self.rank[rootP] += 1 def solve(): N, M = map(int, input().split()) dsu = DisjointSet(N+1) # 初始化不相交集 for _ in range(M): u, v = map(int, input().split()) dsu.union(u,v) groups = set() for i in range(1,N+1): groups.add(dsu.find(i)) bridges_needed = len(groups)-1 print(f"Bridges needed to connect all components: {bridges_needed}") solve() ``` 这段代码定义了一个名为 `DisjointSet` 的类来进行并查集的操作,包括初始化、寻找根节点以及联合两个子集的功能。最后,在主函数 `solve()` 中读取输入参数并对每一对好友调用 `dsu.union()` 方法直到遍历完所有的边为止。之后计算不同组件的数量从而得出所需的桥接次数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值