Handler消息传递机制

介绍了Android中UI线程的概念及其重要性,探讨了如何使用Handler类在主线程和子线程间传递消息,确保UI组件更新的安全性和正确性。

       出于性能优化考虑,Android的UI操作并不是线程安全的,这意味着如果有多个线程并发操作UI组件,可能导致线程安全问题。为了解决这个问题,Android制定了一条简单的规则:只允许UI线程修改Activity里的UI组件。

       当一个程序第一次启动时,Android会同时启动一条主线程(Main Thread),主线程主要负责处理与UI相关的事件,如用户的按键事件、用户接触屏幕的事件及屏幕绘图事件,并把相关的事件分发到对应的组件进行处理。所以主线程通常又被叫做UI线程。

       Android的消息传递机制是另一种形式的“事件处理”,这种机制主要是为了解决Android应用的多线程问题——Android平台只允许UI线程修改Activity里的UI组件,这样就会导致新启动的线程无法动态改变界面组件的属性值。但在实际Android应用开发中,尤其是涉及动画的游戏开发中,需要让新启动的线程周期性地改变界面组件的属性值,这就需要借助于Handler的消息传递机制来实现了。

Handler类简介

   Handler类的主要作用有两个:

     1、在新启动的线程中发送消息。

     2、在主线程中获取、处理消息。

   为了让主线程能“适时”地处理新启动的线程所发送的消息,显然只能通过回调的方式来实现——开发者只要重写 Handler 类中处理消息的方法,当新启动的线程发送消息时,消息会发送到与之关联的 MessageQueue ,而 Handler 会不断地从MessageQueue 中获取并处理消息——这将导致 Handler 类中处理消息的方法被回调。

Handler类包含如下方法用于发送、处理消息。

  1、void handleMessage(Message msg):处理消息的方法。该方法通常用于被重写。

  2、final boolean hasMessages(int what):检查消息队列中是否包含what属性为指定值得消息。

  3、final boolean hsaMessages(int what,Object object):检查消息队列中是否包含what属性为指定值且object属性为指定对象的消息。

  4、多个重载的 Message obtainMessage():获取消息。

  5、sendEmptyMessage(int what):发送空消息。

  6、final boolean sendEmptyMessageDelayed(int what,long delayMills):指定多少毫秒之后发送空消息。

  7、final boolean sendMessage(Message msg):立即发送消息。

  8、final boolean sendMessageDelayed(Message msg,long delayMillis):指定多少毫秒之后发送消息。

借助于上面这些方法,程序可以方便地利用Handler 类进行消息传递。

Handler、Loop、MessageQueue的工作原理

  为了更好的理解Handler的工作原理,先介绍一下与Handler一起工作的几个组件。

  1、Message:Handler 接受和处理的消息对象

  2、Looper:每个线程只能拥有一个Looper。它的loop方法负责读取MessageQueue中的消息,读到消息之后就把消息交给发送消息的Handler进行处理。

  3、MessageQueue:消息队列,它采用先进先出的方法来管理Message。程序创建Looper对象时会在它的构造器中创建Looper对象。Looper 提供的构造器源代码如下:

1 private Looper()
2 {
3   mQueue=new MessageQueue();
4   mRun=true;
5   mThread=Thread.currentThread();
6 }

   该构造器使用了 private 修饰,表明程序员无法通过构造器创建Looper对象。从上面的代码中不难看出,程序在初始化Looper时会创建一个与之关联的 MessageQueue ,这个MessageQueue就负责管理消息。

  1、Handler:它的作用有两个——发送消息和处理消息,程序使用Handler发送消息,被Handler发送的消息必须被送到指定的MessageQueue。也就是说,如果希望Handler正常工作,必须在当前线程中有一个MessageQueue,否则消息就没有MessageQueue进行保存了。不过MessageQueue是由Looper负责管理的,也就是说,如果希望Handler正常工作,必须在当前线程中有一个Looper对象,为了保证当前线程中有Looper对象,可以分如下两种情况处理。

  1、主UI线程中,系统已经初始化了一个Looper对象,因此程序直接创建Handler即可,然后就可通过Handler来发送消息、处理消息。

  2、程序员自己启动的子线程,程序员必须自己创建一个Looper对象,并启动它。创建Looper对象调用它的prepare()方法即可。

prepare()方法保证每个线程最多只有一个Looper对象。prepare()方法的源代码如下:

public static final void prepare()
{
    if(sThreadLocal.get()!=null)
    {
        throw new RuntimeException("Only one Looper may be createed per thread");
    }
    sThreadLocal.set(new Looper());
}

   然后调用Looper 的静态 loop() 方法来启动它。loop()方法使用一个死循环不断取出MessageQueue 中的消息,并将取出的消息分给对应的Handler进行处理。

 

  归纳起来,Looper、MessageQueue、Handler 各自的作用如下:

  1、Looper:每个线程只有一个Looper,它负责管理 MessageQueue ,会不断地从MessageQueue中取出消息。并将消息分给对应的Handler处理。

  2、MessageQueue:由Looper负责管理。它采用先进先出的方法来管理Message。

  3、Handler:它能把消息发送给Looper管理的MessageQueue,并负责处理Looper分给它的消息。

 在线程中使用Handler的步骤如下:

     1、调用Looper的prepare()方法为当前线程创建Looper对象,创建Looper对象时,它的构造器会创建与之配套的MessageQueue。

  2、有了Looper之后,创建Handler子类的实例,重写handlerMessage()方法,该方法负责处理来自于其他线程的消息。

  3、调用Looper的loop()方法启动Looper。

 

转载于:https://www.cnblogs.com/haoxiaozhang/p/5251268.html

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于任务的线性模型,特别适用于问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值