USACO 1.1 beads

本文探讨了一种独特的项链排列问题,即如何通过特定的切割点,从给定的彩色珠串中收集到最多的相同颜色珠子。通过引入环形数组和特殊字符来表示不同颜色的珠子,提出了一种算法解决方案。详细解释了如何遍历数组两次以确定最优切割点,并通过实例展示了求解过程和输出结果。

You have a necklace of N red, white, or blue beads (3<=N<=350) some of which are red, others blue, and others white, arranged at random. Here are two examples for n=29:

                1 2                               1 2
            r b b r                           b r r b
          r         b                       b         b
         r           r                     b           r
        r             r                   w             r
       b               r                 w               w
      b                 b               r                 r
      b                 b               b                 b
      b                 b               r                 b
       r               r                 b               r
        b             r                   r             r
         b           r                     r           r
           r       r                         r       b
             r b r                             r r w
            Figure A                         Figure B
                        r red bead
                        b blue bead
                        w white bead

The beads considered first and second in the text that follows have been marked in the picture.

The configuration in Figure A may be represented as a string of b's and r's, where b represents a blue bead and r represents a red one, as follows: brbrrrbbbrrrrrbrrbbrbbbbrrrrb .

Suppose you are to break the necklace at some point, lay it out straight, and then collect beads of the same color from one end until you reach a bead of a different color, and do the same for the other end (which might not be of the same color as the beads collected before this).

Determine the point where the necklace should be broken so that the most number of beads can be collected.

Example

For example, for the necklace in Figure A, 8 beads can be collected, with the breaking point either between bead 9 and bead 10 or else between bead 24 and bead 25.

In some necklaces, white beads had been included as shown in Figure B above. When collecting beads, a white bead that is encountered may be treated as either red or blue and then painted with the desired color. The string that represents this configuration will include the three symbols r, b and w.

Write a program to determine the largest number of beads that can be collected from a supplied necklace.

PROGRAM NAME: beads

INPUT FORMAT

Line 1:N, the number of beadsLine 2:a string of N characters, each of which is r, b, or w

SAMPLE INPUT (file beads.in)

29
wwwbbrwrbrbrrbrbrwrwwrbwrwrrb

OUTPUT FORMAT

A single line containing the maximum of number of beads that can be collected from the supplied necklace.

SAMPLE OUTPUT (file beads.out)

11

OUTPUT EXPLANATION

Consider two copies of the beads (kind of like being able to runaround the ends). The string of 11 is marked.

wwwbbrwrbrbrrbrbrwrwwrbwrwrrb wwwbbrwrbrbrrbrbrwrwwrbwrwrrb
                       ****** *****
                       rrrrrb bbbbb  <-- assignments
                       5 x r  6 x b  <-- 11 total




这道题相当之恶心,首先是环的情况,然后还要考虑一点,你在前面的时候修改了数组,需要在下一次的时候改回来。还有就是可能两边加起来超过N,这是非常不爽的,但直接输出N就可以了,当时犯二了没有想到,
写了半天,真是让人羞愧。。

不说了,附上代码
View Code
 1 #include<iostream>
 2 #include<string.h>
 3 #include<algorithm>
 4 #include<cstdio>
 5 #include<cstdlib>
 6 #include<cstring>
 7 
 8 using namespace std;
 9 
10 int n;
11 char s[351];
12 char a[702];
13 char b[702];
14 
15 int x,y;
16 
17 
18 int  leftcount(int q)
19 {
20      strcpy(a,b);
21      int x=q;
22      int sum=1;
23      while(a[x]=='w'&&x>=0)
24      {
25          a[x]=a[x-1];
26          sum++;
27          x--;
28      }
29      while((a[x-1]==a[x]||a[x-1]=='w')&&x>=0)
30      {
31         sum++;
32         if(a[x-1]=='w')
33         a[x-1]=a[x];
34         x--;
35      }
36      return sum;
37 }
38 
39 
40 int rightcount(int q)
41 {
42     strcpy(a,b);
43     int x=q;
44     int sum=1;
45     while(a[x]=='w'&&x<=2*n-1)
46     {
47        a[x]=a[x+1];
48        sum++;
49        x++;
50     }
51     while((a[x+1]==a[x]||a[x+1]=='w')&&x<=2*n-1)
52     {
53        sum++;
54        if(a[x+1]=='w')
55        a[x+1]=a[x];
56        x++;
57     }
58     return sum;
59 }
60        
61     
62      
63       
64 
65 
66 int main()
67 {
68     freopen("beads.in","r",stdin);
69     freopen("beads.out","w",stdout);
70     cin>>n;
71     cin>>s;
72     strcpy(b,s);
73     strcat(b,s);
74     int sum=0;
75     for(int i=0;i<=n-1;i++)
76     {
77         x=leftcount(i+n);
78         y=rightcount(i+1);
79         if(x+y>n)
80         y=n;
81         else
82         y=x+y;
83         sum=max(sum,y);
84     }
85     cout<<sum<<endl; 
86     return 0;
87 }

 

转载于:https://www.cnblogs.com/spwkx/archive/2012/07/13/2590758.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值