object detection物体检测基本概念

本文详细介绍了在目标检测任务中评估模型性能的两个关键指标:精确率(Precision)和召回率(Recall)。精确率衡量了所有被检测为正例的对象中真正例的比例,而召回率则反映了所有实际为正例的对象中被正确检测出来的比例。对于多类别检测器,这两个指标分别以向量或单元数组的形式给出,每个元素对应一个特定的类别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.precision-recall

https://cn.mathworks.com/help/vision/ref/evaluatedetectionprecision.html?requestedDomain=www.mathworks.com#outputarg_precision

averagePrecision — Average precision
numeric scalar | vector

Average precision over all the detection results, returned as a numeric scalar or vector. Precision is a ratio of true positive instances to all positive instances of objects in the detector, based on the ground truth. For a multiclass detector, the average precision is a vector of average precision scores for each object class.

recall — Recall values from each detection
vector of numeric scalars | cell array

Recall values from each detection, returned as a vector of numeric scalars or as a cell array. Recall is a ratio of true positive instances to the sum of true positives and false negatives in the detector, based on the ground truth. For a multiclass detector, recalland precision are cell arrays, where each cell contains the data points for each object class.

precision — Precision values from each detection
vector of numeric scalars | cell array

Precision values from each detection, returned as a vector of numeric scalars or as a cell array. Precision is a ratio of true positive instances to all positive instances of objects in the detector, based on the ground truth. For a multi-class detector, recall and precision are cell arrays, where each cell contains the data points for each object class.

 

转载于:https://www.cnblogs.com/wordchao/p/8133808.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值