【bzoj4165】矩阵 堆+STL-map

本文介绍了一种解决特定矩阵问题的方法:寻找给定矩阵中所有满足条件的子矩阵权值之第K小值。利用堆和STL-map实现高效算法,通过逐步扩展矩阵来避免重复计算。

题目描述

定义和谐矩阵为长不小于 Mina 且宽不小于 Minb 的矩阵,矩阵的权值为整个矩阵内所有数的和。给定一个长为 N,宽为 M 的矩阵 A,求它的所有和谐子矩阵中权值第 K 小的矩阵,并输出它的权值。

输入

第 1 行为五个正整数,分别为 N , M , Mina , Minb , K,相邻两个数用一个空格分隔。接下来的 N 行,每行 M
 个用一个空格分隔的数,表示给定的矩阵 A。
1 <= N,M <=1000, 1 <= Mina <= N, 1 <= Minb <= M,
1 <= K <= 250000 ,矩阵 A 内每个数均为不超过 3000 的非负整数

输出

仅一行,一个数,表示第 K 小矩阵的权值。如果第 K 小矩阵不存在,输出-1。

样例输入

3 4 2 2 3
0 1 3 7
1 16 5 2
7 6 9 3

样例输出

19


题解

堆+STL-map

这种类型的题也没少做了,初次写这样的大概是 [NOI2010]超级钢琴

由于所有元素非负,因此一个矩形的权值和一定比其任意一个子矩形权值和大。因此只有在处理完子矩形后才处理该矩形。

使用堆维护贪心顺序,初始时把所有长度为Mina,宽度为Minb的矩形加入堆中,每次取堆顶元素,并把该举行左、右、上、下扩展一层所得的矩形加入堆中。

然而这样矩形会计算重复,因此需要使用hash表储存一个矩形是否出现过。

我使用了map,由于常数巨大而垫底...

时间复杂度 $O(nm+k\log k)$ 

#include <set>
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#define N 1010
using namespace std;
typedef pair<int , int> pr;
typedef long long ll;
ll sum[N][N];
struct data
{
	int a , b , c , d;
	data() {}
	data(int w , int x , int y , int z) {a = w , b = x , c = y , d = z;}
	bool operator<(const data &x)const {return a == x.a ? b == x.b ? c == x.c ? d < x.d : c < x.c : b < x.b : a < x.a;}
	ll query()const {return sum[c][d] - sum[c][b - 1] - sum[a - 1][d] + sum[a - 1][b - 1];}
};
struct cmp
{
	bool operator()(const data &x , const data &y)
	{
		return x.query() > y.query();
	}
};
priority_queue<data , vector<data> , cmp> heap;
set<data> s;
inline char nc()
{
	static char buf[100000] , *p1 , *p2;
	return p1 == p2 && (p2 = (p1 = buf) + fread(buf , 1 , 100000 , stdin) , p1 == p2) ? EOF : *p1 ++ ;
}
inline int read()
{
	int ret = 0; char ch = nc();
	while(!isdigit(ch)) ch = nc();
	while(isdigit(ch)) ret = ((ret + (ret << 2)) << 1) + (ch ^ '0') , ch = nc();
	return ret;
}
int main()
{
	int n = read() , m = read() , p = read() , q = read() , k = read() , i , j;
	ll ans = 0;
	data t , tmp;
	for(i = 1 ; i <= n ; i ++ )
		for(j = 1 ; j <= m ; j ++ )
			sum[i][j] = read() + sum[i][j - 1] + sum[i - 1][j] - sum[i - 1][j - 1];
	for(i = 1 ; i <= n - p + 1 ; i ++ )
		for(j = 1 ; j <= m - q + 1 ; j ++ )
			t = data(i , j , i + p - 1 , j + q - 1) , heap.push(t) , s.insert(t);
	for(i = 1 ; i <= k ; i ++ )
	{
		if(heap.empty())
		{
			puts("-1");
			return 0;
		}
		t = heap.top() , heap.pop() , ans = t.query();
		if(t.a > 1 && s.find(tmp = data(t.a - 1 , t.b , t.c , t.d)) == s.end()) heap.push(tmp) , s.insert(tmp);
		if(t.b > 1 && s.find(tmp = data(t.a , t.b - 1 , t.c , t.d)) == s.end()) heap.push(tmp) , s.insert(tmp);
		if(t.c < n && s.find(tmp = data(t.a , t.b , t.c + 1 , t.d)) == s.end()) heap.push(tmp) , s.insert(tmp);
		if(t.d < m && s.find(tmp = data(t.a , t.b , t.c , t.d + 1)) == s.end()) heap.push(tmp) , s.insert(tmp);
	}
	printf("%lld\n" , ans);
	return 0;
}

 

 

转载于:https://www.cnblogs.com/GXZlegend/p/7816312.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值