求1-1000中能被3或5整除的数字之和

本文分享了一个有趣的数学解法,通过等差数列公式巧妙计算1到1000范围内能被3或5整除的数字之和,解释了两种解题思路,包括常规遍历法和利用数学性质的快速求和方法,并特别指出了如何避免重复计数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

昨天在QQ群上看到一道题,“求1-1000中能被3或5整除的数字之和”

其中看到很有趣的解法二,最开始还是挺迷惑的, 后来想了下,再经人指点,就觉得茅塞顿开。

第一种解法很普遍,就是将1000以内的数都遍历一遍,只要有整除3或者整除5的数,就将其加起来,最终得到一个总的和。

让我感兴趣的是第二种解法,这里巧妙运用了数学上的等差数列

一个公差为d的等差数列a_1,a_2,\dots,a_nn项的级数为:

S_n = a_1+a_2+\dots+a_n=\sum_{i=0}^{n-1} (a_1+id)=\frac{n( a_1 + a_n)}{2} =\frac{n[ 2a_1 + (n-1)d ]}{2}.
第二种方法第一步就用了(a1+an)/3*3,所以就变成了3*(1+333)*333/2,这一步就是把整除3的所有项都加起来。
同理,sum(Math.floor(input-1)/5))*5中,就把1000以内中能整除5的所有项都加起来
最后能整除3和整除5里面有重复的数,比如15,这时就把重复除以15的数减掉,就能获得1000以内能被3或5整除的数字之和。

转载于:https://www.cnblogs.com/meetup/p/5198308.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值