浙江理工2015.12校赛-G Jug Hard

本文探讨了如何通过数学算法解决特定的水壶问题。利用扩展欧几里得算法,可以判断是否能通过两个不同容量的水壶得到指定数量的水。文章提供了具体的实现代码,帮助读者理解这一算法的应用。

Jug Hard
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1172 Solved: 180
Description

You have two empty jugs and tap that may be used to fill a jug. When filling a jug from the tap, you can only fill it completely (i.e., you cannot partially fill it to a desired level, since there are no volume measurements on the jug).

You may empty either jug at any point.

You may transfer water between the jugs: if transferring water from a larger jug to a smaller jug, the smaller jug will be full and there will be water left behind in the larger jug.

Given the volumes of the two jugs, is it possible to have one jug with some specific volume of water?
Input

The first line contains T, the number of test cases (1 ≤ T 100 000). Each test case is composed of three integers: a b d where a and b (1 ≤ a, b ≤ 10 000 000) are the volumes of the two jugs, and d is the desired volume of water to be generated. You can assume that d ≤ max(a,b).
Output

For each of the T test cases, output either Yes or No, depending on whether the specific volume of water can be placed in one of the two jugs.
Sample Input

3
8 1 5
4 4 3
5 3 4

Sample Output

Yes
No
Yes

an+bn=d;
证明等式的成立,就是扩展欧几里得的证明

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;

int GCD(int a,int b)
{
    return b==0?a:GCD(b,a%b);
}

int main()
{
    int T;
    int n ,m,d;

    scanf("%d",&T);
    while(T--)
    {
        scanf("%d %d %d",&n,&m,&d);
        printf("%s\n",d%GCD(n,m)==0?"Yes":"No");

    }
    return 0;
}

转载于:https://www.cnblogs.com/juechen/p/5255900.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值