linux安装spark-2.3.0集群

本文详细介绍如何在已配置好的Hadoop集群环境下安装和配置Spark集群,包括Scala环境配置、Spark安装包下载及解压、配置文件修改等步骤,并提供启动Spark集群的方法及验证启动成功的技巧。

(安装spark集群的前提是服务器已经配置了jdk并且安装hadoop集群(主要是hdfs)并正常启动,hadoop集群安装可参考《hadoop集群搭建(hdfs)》)

1、配置scala环境

  详细配置过程可参考《linux安装scala环境》,此处就不在详细描述

2、下载spark安装包

  因为我之前安装的hadoop是3.0版本的,所以spark我使用的是spark-2.3.0版本

  wget https://www.apache.org/dyn/closer.lua/spark/spark-2.3.0/spark-2.3.0-bin-hadoop2.7.tgz

3、解压安装包

  tar zxvf spark-2.3.0-bin-hadoop2.7.tgz

4、修改配置文件

  1、spark-env.sh

   复制spark-env.sh.template文件成spark-env.sh(cp spark-env.sh.template spark-env.sh)

   在spark-env.sh末尾增加以下配置:

export JAVA_HOME=/usr/java/jdk1.8.0_11
export SCALA_HOME=${SCALA_HOME}
export HADOOP_HOME=/home/hadoop/hadoop-3.0.0

export STANDALONE_SPARK_MASTER_HOST=node101
export SPARK_MASTER_IP=$STANDALONE_SPARK_MASTER_HOST

export SPARK_LAUNCH_WITH_SCALA=0
export SPARK_LIBRARY_PATH=${SPARK_HOME}/lib
export SCALA_LIBRARY_PATH=${SPARK_HOME}/lib
export SPARK_MASTER_WEBUI_PORT=18080

if [ -n "$HADOOP_HOME" ]; then
export SPARK_LIBRARY_PATH=$SPARK_LIBRARY_PATH:${HADOOP_HOME}/lib/native
fi

export HADOOP_CONF_DIR=/home/hadoop/hadoop-3.0.0/etc/hadoop

  2、slaves

    复制slaves.template文件成slaves(cp  slaves.template slaves)

    修改slave是文件的内容为:

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

# A Spark Worker will be started on each of the machines listed below.
node101
node102
node103

  3、将整个spark解压出来的文件拷贝到另外的两台机器上

5、启动spark集群

  cd /home/hadoop/spark/sbin

  ./start-all.sj

  启动成功后会有如下的信息

6、检查各节点spark启动情况

  分别在三台服务器上使用jps命令查看Master进程和worker进程是否存在,一下是分别是三台服务器的情况

7、使用spark-web在浏览器上查看spark集群的运行情况(之前在配置文件里面配置的端口是18080)

 

 

 

  

   

转载于:https://www.cnblogs.com/gulang-jx/p/8574156.html

在dataworks上执行scala编写的spark任务,获取hologres报错如下 2025-08-04 08:55:31,896 ERROR org.apache.spark.deploy.yarn.ApplicationMaster - User class threw exception: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 25.0 failed 4 times, most recent failure: Lost task 0.3 in stage 25.0 (TID 2364, 3010b5205.cloud.b7.am301, executor 11): ExecutorLostFailure (executor 11 exited caused by one of the running tasks) Reason: Container marked as failed: container_1754267297905_2080247398_01_000011 on host: 3010b5205.cloud.b7.am301. Exit status: 137. Diagnostics: 3010b5205.cloud.b7.am301 Driver stacktrace: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 25.0 failed 4 times, most recent failure: Lost task 0.3 in stage 25.0 (TID 2364, 3010b5205.cloud.b7.am301, executor 11): ExecutorLostFailure (executor 11 exited caused by one of the running tasks) Reason: Container marked as failed: container_1754267297905_2080247398_01_000011 on host: 3010b5205.cloud.b7.am301. Exit status: 137. Diagnostics: 3010b5205.cloud.b7.am301 Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1599) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1587) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1586) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) ~[scala-library-2.11.8.jar:?] at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) ~[scala-library-2.11.8.jar:?] at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1586) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at scala.Option.foreach(Option.scala:257) ~[scala-library-2.11.8.jar:?] at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:831) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1820) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1769) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1758) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.SparkContext.runJob(SparkContext.scala:2027) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.SparkContext.runJob(SparkContext.scala:2048) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.SparkContext.runJob(SparkContext.scala:2067) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:368) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3272) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2484) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2484) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3253) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3252) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.Dataset.head(Dataset.scala:2484) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.Dataset.take(Dataset.scala:2698) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.Dataset.showString(Dataset.scala:254) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.Dataset.show(Dataset.scala:725) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.Dataset.show(Dataset.scala:702) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at com.bmsoft.operate.VsZConductorOverlimiteventPeriod.ConductorconductorOverlimiteventInfo(VsZConductorOverlimiteventPeriod.scala:181) ~[_ed7dd58644e462c4a5e1b90cb86197da.jar:?] at com.bmsoft.operate.VsZConductorOverlimiteventPeriod.conductorOverlimiteventInfo(VsZConductorOverlimiteventPeriod.scala:46) ~[_ed7dd58644e462c4a5e1b90cb86197da.jar:?] at com.bmsoft.task.VsZConductorOverlimiteventPeriodTask$.func(VsZConductorOverlimiteventPeriodTask.scala:29) ~[_ed7dd58644e462c4a5e1b90cb86197da.jar:?] at com.bmsoft.task.VsZConductorOverlimiteventPeriodTask$$anonfun$main$1.apply(VsZConductorOverlimiteventPeriodTask.scala:33) ~[_ed7dd58644e462c4a5e1b90cb86197da.jar:?] at com.bmsoft.task.VsZConductorOverlimiteventPeriodTask$$anonfun$main$1.apply(VsZConductorOverlimiteventPeriodTask.scala:33) ~[_ed7dd58644e462c4a5e1b90cb86197da.jar:?] at com.bmsoft.scala.utils.LeoUtils.package$$anonfun$taskEntry_odps$1.apply$mcVJ$sp(LeoUtils.scala:453) ~[_ed7dd58644e462c4a5e1b90cb86197da.jar:?] at com.bmsoft.scala.utils.LeoUtils.package$$anonfun$taskEntry_odps$1.apply(LeoUtils.scala:431) ~[_ed7dd58644e462c4a5e1b90cb86197da.jar:?] at com.bmsoft.scala.utils.LeoUtils.package$$anonfun$taskEntry_odps$1.apply(LeoUtils.scala:431) ~[_ed7dd58644e462c4a5e1b90cb86197da.jar:?] at scala.collection.immutable.NumericRange.foreach(NumericRange.scala:73) ~[scala-library-2.11.8.jar:?] at com.bmsoft.scala.utils.LeoUtils.package$.taskEntry_odps(LeoUtils.scala:431) ~[_ed7dd58644e462c4a5e1b90cb86197da.jar:?] at com.bmsoft.task.VsZConductorOverlimiteventPeriodTask$.main(VsZConductorOverlimiteventPeriodTask.scala:33) ~[_ed7dd58644e462c4a5e1b90cb86197da.jar:?] at com.bmsoft.task.VsZConductorOverlimiteventPeriodTask.main(VsZConductorOverlimiteventPeriodTask.scala) ~[_ed7dd58644e462c4a5e1b90cb86197da.jar:?] at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) ~[?:1.8.0_65-AliJVM] at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) ~[?:1.8.0_65-AliJVM] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) ~[?:1.8.0_65-AliJVM] at java.lang.reflect.Method.invoke(Method.java:497) ~[?:1.8.0_65-AliJVM] at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$4.run(ApplicationMaster.scala:708) [spark-yarn_2.11-2.3.0-odps0.30.0.jar:?] 2025-08-04 08:55:31,908 INFO org.apache.spark.deploy.yarn.ApplicationMaster - Final app status: FAILED, exitCode: 15, (reason: User class threw exception: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 25.0 failed 4 times, most recent failure: Lost task 0.3 in stage 25.0 (TID 2364, 3010b5205.cloud.b7.am301, executor 11): ExecutorLostFailure (executor 11 exited caused by one of the running tasks) Reason: Container marked as failed: container_1754267297905_2080247398_01_000011 on host: 3010b5205.cloud.b7.am301. Exit status: 137. Diagnostics: 3010b5205.cloud.b7.am301 Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1599) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1587) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1586) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1586) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:831) at scala.Option.foreach(Option.scala:257) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:831) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1820) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1769) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1758) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:642) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2027) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2048) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2067) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:368) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3272) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2484) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2484) at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3253) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3252) at org.apache.spark.sql.Dataset.head(Dataset.scala:2484) at org.apache.spark.sql.Dataset.take(Dataset.scala:2698) at org.apache.spark.sql.Dataset.showString(Dataset.scala:254) at org.apache.spark.sql.Dataset.show(Dataset.scala:725) at org.apache.spark.sql.Dataset.show(Dataset.scala:702) at com.bmsoft.operate.VsZConductorOverlimiteventPeriod.ConductorconductorOverlimiteventInfo(VsZConductorOverlimiteventPeriod.scala:181) at com.bmsoft.operate.VsZConductorOverlimiteventPeriod.conductorOverlimiteventInfo(VsZConductorOverlimiteventPeriod.scala:46) at com.bmsoft.task.VsZConductorOverlimiteventPeriodTask$.func(VsZConductorOverlimiteventPeriodTask.scala:29) at com.bmsoft.task.VsZConductorOverlimiteventPeriodTask$$anonfun$main$1.apply(VsZConductorOverlimiteventPeriodTask.scala:33) at com.bmsoft.task.VsZConductorOverlimiteventPeriodTask$$anonfun$main$1.apply(VsZConductorOverlimiteventPeriodTask.scala:33) at com.bmsoft.scala.utils.LeoUtils.package$$anonfun$taskEntry_odps$1.apply$mcVJ$sp(LeoUtils.scala:453) at com.bmsoft.scala.utils.LeoUtils.package$$anonfun$taskEntry_odps$1.apply(LeoUtils.scala:431) at com.bmsoft.scala.utils.LeoUtils.package$$anonfun$taskEntry_odps$1.apply(LeoUtils.scala:431) at scala.collection.immutable.NumericRange.foreach(NumericRange.scala:73) at com.bmsoft.scala.utils.LeoUtils.package$.taskEntry_odps(LeoUtils.scala:431) at com.bmsoft.task.VsZConductorOverlimiteventPeriodTask$.main(VsZConductorOverlimiteventPeriodTask.scala:33) at com.bmsoft.task.VsZConductorOverlimiteventPeriodTask.main(VsZConductorOverlimiteventPeriodTask.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:497) at org.apache.spark.deploy.yarn.ApplicationMaster$$anon$4.run(ApplicationMaster.scala:708) )
最新发布
08-05
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值