【POJ3071】Football - 状态压缩+期望 DP

探讨了在单淘汰赛制下,如何基于各队之间的胜负概率矩阵预测最终获胜队伍的方法。通过递推公式计算每轮比赛中各队的胜出概率,最终确定最有可能赢得整个锦标赛的队伍。

Description

Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.

Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

Input

The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.

Output

The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.

题目大意

给你$2^n$个球队,必须相邻的球队才可以比赛,在告诉你i球队战胜j球队的概率,问最后哪支球队赢得概率最大。

思路

设$f_{i,j}$表示第$i$次比赛队伍$j$获胜的概率,枚举与$j$比赛的$k$,可得$f_{i,j} = \sum_{k=1}^{2^n}f_{i-1,j}*f_{i-1,k}*p_{j,k}*[$ $\text{j与k相邻} ]$

判断相邻先<<(i-1)再用异或(^)运算判断一下即可

/************************************************
*Author        :  lrj124
*Created Time  :  2018.09.30.19:13
*Mail          :  1584634848@qq.com
*Problem       :  poj3071
************************************************/
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn = (1<<7) + 10;
double p[maxn][maxn],f[maxn][maxn];
int n;
int main() {
	while (cin >> n) {
		if (n == -1) break;
		memset(f,0,sizeof(f));
		for (int i = 1;i <= (1<<n);i++) {
			f[0][i] = 1;
			for (int j = 1;j <= (1<<n);j++) scanf("%lf",&p[i][j]);
		}
		for (int i = 1;i <= (1<<n);i++)
			for (int j = 1;j <= (1<<n);j++)
				for (int k = 1;k <= (1<<n);k++)
					if ((((j-1)>>(i-1))^1) == ((k-1)>>(i-1)))
						f[i][j] += f[i-1][j]*f[i-1][k]*p[j][k];
		double Max = 0;
		int ans;
		for (int i = 1;i <= (1<<n);i++)
			if (f[n][i] > Max) {
				Max = f[n][i];
				ans = i;
			}
		printf("%d\n",ans);
	}
	return 0;
}

转载于:https://www.cnblogs.com/lrj124/p/9733377.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值