leetCode-Longest Continuous Increasing Subsequence

本文介绍了一种求解最长连续递增子序列长度的方法。通过遍历整型数组,利用计数器记录当前递增子序列的长度,并在遇到不连续递增情况时更新最大长度。最终返回最长连续递增子序列的长度。

Description:
Given an unsorted array of integers, find the length of longest continuous increasing subsequence.

Example 1:

Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3. 
Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4. 

Example 2:

Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1. 

Note: Length of the array will not exceed 10,000.

My Solution:

class Solution {
    public int findLengthOfLCIS(int[] nums) {
        int count = 1;
        int max = 1;
        int len = nums.length;
        if(len == 0){
            return 0;
        }
        for(int i = 0;i < len - 1;i++){
            if(nums[i + 1] <= nums[i]){
                if(count > max){
                    max = count;
                }
                count = 1;
            }else{
                count++;
            }
        }
        return Math.max(count,max);
    }
}

总结:注意用count来计数就可以了,如果nums[i+1]>nums[i],count++,否则,count置为1,如果count>max,max更新,最后,返回的时候需要注意用Math.max(count,max),因为有可能count一直递增,还没与max比较就退出循环了。

版权声明:本文为博主原创文章,未经博主允许不得转载。

转载于:https://www.cnblogs.com/kevincong/p/7887613.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值