软件测试——第三次作业

本文介绍了一个用于生成指定数量质数的Java程序,并通过JUnit框架实现了该程序的单元测试,确保了代码的质量与正确性。

printPrime()代码:

复制代码
/******************************************************* 
     * Finds and prints n prime integers 
     * Jeff Offutt, Spring 2003 
     ******************************************************/ 
    public static void printPrimes (int n) 
    { 
        int curPrime; // Value currently considered for primeness 
        int numPrimes; // Number of primes found so far. 
        boolean isPrime; // Is curPrime prime? 
        int [] primes = new int [MAXPRIMES]; // The list of prime numbers. 

        // Initialize 2 into the list of primes. 
        primes [0] = 2; 
        numPrimes = 1; 
        curPrime = 2; 
        while (numPrimes < n) 
        { 
            curPrime++; // next number to consider ... 
            isPrime = true; 
            for (int i = 0; i <= numPrimes-1; i++) 
            { // for each previous prime. 
                if (curPrime%primes[i]==0) 
                { // Found a divisor, curPrime is not prime. 
                    isPrime = false; 
                    break; // out of loop through primes. 
                } 
            } 
            if (isPrime) 
            { // save it! 
                primes[numPrimes] = curPrime; 
                numPrimes++; 
            } 
        } // End while 
        
        // Print all the primes out. 
        for (int i = 0; i <= numPrimes-1; i++) 
        { 
            System.out.println ("Prime: " + primes[i]); 
        } 
    } // end printPrimes
复制代码

a)control flow graph

b)

first condition:   if test case (n = 5) finds the error first, if should execute the error code first. So if in node 7,

 

isPrime = false became isPrime = true, t2(n=5) will find it first.

second condition:  MAXPRIMES = 4, array out of bounds

c)

n=1

d)

Len0

     [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]!

      Len1

      [1,2],[2,3],[2,10],[3,4],[4,5],[4,8],[5,6],[5,7],[6,4],[7,8],[8,2],[8,9],[9,2],[10,11],[11,12],[11,13]!,[12,11]

      Len3

  [1,2,3,4],[1,2,10,11],[2,3,4,8],[2,3,4,5],[2,10,11,12],[2,10,11,13]!,[3,4,5,6],[3,4,5,7],[3,4,8,2],[3,4,8,9],[4,5,6,4]*,[4,5,7,8],[4,8,9,2],[4,8,2,3],[4,8,2,10],[5,6,4,5]*,[5,6,4,8],[5,7,8,9],[5,7,8,2],[6,4,5,6]*,[6,4,5,7],[6,4,8,2],[6,4,8,9],[7,8,2,3],[7,8,2,10],[7,8,9,2],[8,2,3,4],[8,2,10,11],[8,9,2,3],[8,9,2,10],[9,2,3,4],[9,2,10,11]

      Len5

  [1,2,3,4,5,6],[1,2,3,4,5,7],[1,2,3,4,8,9],[2,3,4,5,7,8],[2,3,4,8,9,2]*,[3,4,5,7,8,9],[3,4,5,7,8,2],[3,4,8,9,2,3]*,[3,4,8,9,2,10],[3,4,8,2,10,11],[4,5,7,8,2,3],[4,5,7,8,2,10],[4,5,7,8,9,2],[4,8,9,2,3,4]*,[4,8,9,2,10,11],[4,8,2,10,11,12],[4,8,2,10,11,13]!,[5,6,4,8,9,2],[5,6,4,8,2,3],[5,6,4,8,2,10],[5,7,8,2,3,4],[5,7,8,2,10,11],[5,7,8,9,2,3],[5,7,8,9,2,10],[6,4,5,7,8,2],[6,4,5,7,8,9],[6,4,8,2,10,11],[6,4,8,9,2,3],[6,4,8,9,2,10],[7,8,9,2,3,4],[7,8,9,2,10,11],[7,8,2,3,4,5],[7,8,2,10,11,12],[7,8,2,10,11,13]!,[7,8,9,2,3,4],[7,8,9,2,10,11],[8,2,3,4,5,6],[8,2,3,4,5,7],[8,9,2,3,4,5],[8,9,2,3,4,8]*,[8,9,2,10,11,12],[8,9,2,10,11,13]!,[9,2,3,4,5,6],[9,2,3,4,5,7],[9,2,3,4,8,9]*

      Len7

  [1,2,3,4,5,7,8,9],[2,3,4,5,7,8,9,2]*,[3,4,5,7,8,9,2,10],[3,4,5,7,8,2,10,11],[4,5,7,8,2,10,11,12],[4,5,7,8,2,10,11,13]!,[4,5,7,8,9,2,3,4]*,[4,5,7,8,9,2,10,11],[5,6,4,8,2,10,11,12],[5,6,4,8,2,10,11,13]!,[5,6,4,8,9,2,10,11],[5,7,8,9,2,3,4,5]*,[5,7,8,9,2,10,11,12],[5,7,8,9,2,10,11,13]!,[6,4,5,7,8,2,10,11],[6,4,5,7,8,9,2,3],[6,4,5,7,8,9,2,10],[6,4,8,9,2,10,11,12],[6,4,8,9,2,10,11,13]!,[7,8,9,2,3,4,5,6],[7,8,9,2,3,4,5,7]*,[8,9,2,3,4,5,7,8]*.[9,2,3,4,5,7,8,9]*

      Len9

  [3,4,5,7,8,9,2,10,11,12],[3,4,5,7,8,9,2,10,11,13]!,[6,4,5,7,8,9,2,10,11,12],[6,4,5,7,8,9,2,10,11,13]!

 

So, the TR = {[11,12,11],[12,11,12],[4,5,6,4],[5,6,4,5],[6,4,5,6],[1,2,10,11,12],[1,2,10,11,13], [2,3,4,8,2], [3,4,8,2,3], [4,8,2,3,4] ,[8,2,3,4,8],[1,2,3,4,5,6],[1,2,3,4,8,9],[2,3,4,8,9,2],[3,4,8,9,2,3], [4,8,9,2,3,4], [5,6,4,8,2,3],[8,9,2,3,4,8],[9,2,3,4,8,9],[2,3,4,5,7,8,2],[3,4,5,7,8,2,3],[4,5,7,8,2,3,4],[5,6,4,8,9,2,3],[5,7,8,2,3,4,5],[6,4,5,7,8,2,3],[7,8,2,3,4,5,6],[7,8,2,3,4,5,7],[8,2,3,4,5,7,8],[1,2,3,4,5,7,8,9],[2,3,4,5,7,8,9,2], [4,5,7,8,9,2,3,4],[5,6,4,8,2,10,11,12],[5,6,4,8,2,10,11,13],[5,7,8,9,2,3,4,5],[6,4,5,7,8,9,2,3],[7,8,9,2,3,4,5,6],[7,8,9,2,3,4,5,7],[8,9,2,3,4,5,7,8].[9,2,3,4,5,7,8,9],[3,4,5,7,8,2,10,11,12],[3,4,5,7,8,2,10,11,13],[5,6,4,8,9,2,10,11,12],[5,6,4,8,9,2,10,11,13],[6,4,5,7,8,2,10,11,12],[6,4,5,7,8,2,10,11,13],[3,4,5,7,8,9,2,10,11,12],[3,4,5,7,8,9,2,10,11,13],[6,4,5,7,8,9,2,10,11,12],[6,4,5,7,8,9,2,10,11,13]}

2、基于Junit及Eclemma(jacoco)实现一个主路径覆盖的测试。

if we want to test the printPrime(), we shoule use method assertEquals(), so I changed the  return type from

void to String, here is the changed text.

复制代码
package printPrime;

public class printPrimePro {

    private static final int MAXPRIMES = 1000;

     
    public static String printPrimes (int n) 
    { 
        int curPrime; // Value currently considered for primeness 
        int numPrimes; // Number of primes found so far. 
        boolean isPrime; // Is curPrime prime? 
        String str = "";
        int [] primes = new int [MAXPRIMES]; // The list of prime numbers. 

        // Initialize 2 into the list of primes. 
        primes [0] = 2; 
        numPrimes = 1; 
        curPrime = 2; 
        
        while (numPrimes < n) 
        { 
            curPrime++; // next number to consider ... 
            isPrime = true; 
            for (int i = 0; i <= numPrimes-1; i++) 
            { // for each previous prime. 
                if (curPrime%primes[i]==0) 
                { // Found a divisor, curPrime is not prime. 
                    isPrime = false; 
                    break; // out of loop through primes. 
                } 
            } 
            if (isPrime) 
            { // save it! 
                primes[numPrimes] = curPrime; 
                numPrimes++; 
            } 
        } // End while 
        
        // Print all the primes out. 
        for (int i = 0; i <= numPrimes-1; i++) 
        { 
            str += primes[i]+" ";
        }
        
        return str;
    } // end printPrimes
 
}
复制代码

 

test code

复制代码
package printPrime;

import static org.junit.Assert.*;


import org.junit.Before;
import org.junit.Test;

 public class printPrimeTest {
     public printPrimePro testPrime = new printPrimePro();
     @Before
     public void setUp() throws Exception {    
     }
     @Test
     public void testPrintPrimes() {
         assertEquals("2 3 5 ", testPrime.printPrimes(3));
     }
 }
复制代码

the coverage is 100%!

 

转载于:https://www.cnblogs.com/jinteng/p/8647965.html

### 关于软件测试第三章的练习题 #### 测试用例设计方法——判定表驱动法 针对`NextDate(Y, M, D)`函数的设计,采用判定表的方法能够有效地覆盖各种可能的情况。此方法首先识别输入条件及其取值范围,并定义预期的结果或动作。对于日期处理而言,主要关注的是闰年的计算、月份天数的变化以及边界情况下的表现。 ```python def NextDate(Y, M, D): from datetime import date, timedelta current_date = date(Y, M, D) next_day = current_date + timedelta(days=1) return next_day.year, next_day.month, next_day.day ``` 为了构建完整的判定表,需考虑如下因素: - 年份是否为闰年; - 当前月份是否有30天还是31天; - 是否存在2月这个特殊月份,尤其是当遇到平年和闰年之分时; - 边界条件如每月的第一天和最后一天如何过渡到下一个月; 基于上述考量,可以创建多个条目来描述不同组合下的期望输出[^2]。 #### 插桩技术的应用场景分析 目标代码插桩是一种重要的动态分析手段,它允许开发者在不影响原有应用程序正常运作的前提下收集关于其内部工作流程的信息。根据不同的应用场景和技术实现方式,分为三种执行模式:即时模式、解释模式和探测模式。每种模式都有各自的特点和适用场合,例如,在不需要永久改变原程序的情况下可以选择即时模式;而如果希望深入理解程序逻辑,则解释模式可能是更好的选择;至于那些对性能敏感的任务,或许应该优先考虑效率较高的探测模式[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值