Apriori-关联规则挖掘算法

本文深入探讨了Apriori算法的核心概念及其自底向上的实现方式,从1-频繁集开始,逐步构建高阶频繁集。通过具体实例分析,展示了算法的工作流程,并附上相关图表以直观说明。

Apriori算法采用的是自底向上的方法,从1-频繁集开始,逐步找出高阶频繁集。

它的基本流程是:第一次扫描交易数据库D时,产生1- 频繁集。在此基础上经过连接、修剪产生2-频繁集。以此类推,直到无法产生更高阶的频繁集为止。在第k次循环中,也就是产生k-频繁集的时候,首先产生 k-候选集,k-候选集中每一个项集都是对两个只有一个项不同的属于k-1频繁集的项集连接产生的,k-候选集经过筛选后产生k-频繁集。

具体可以通过下图分析得出:

 

转载于:https://www.cnblogs.com/zhanggl/p/4999346.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值