LeetCode "Pow(x,n)"

本文探讨了在解决数值问题时,从直接、简单的方法转向更优化的Dichotomy方法(如平方根计算),并通过实例展示了如何利用递归和迭代技巧实现效率提升,特别注意了负数情况下的特殊处理。

Next time you see a numeric problem has a too straightforward solution, think about optimized one. 

Like this one: recursion\iteration is tooo slow. So Dichotomy, like sqrt(). Take care of minux n case.

class Solution {
public:
    double pow(double x, int n) {
      if(n == 0)  return 1;
      bool bNeg = false;
      if(n < 0)
      {
        bNeg = true;
        n *= -1;
      }
      
      double r = pow(x, n/2);
      if(n % 2 == 0) r *= r;
      else              r *=r * x;
      
      if(!bNeg) return r;
      else return 1.0/r;
    }
};

转载于:https://www.cnblogs.com/tonix/p/3884032.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值