Codeforces Round #370 (Div. 2) E. Memory and Casinos 线段树

本文解析了CodeForces上E题Memory and Casinos的问题,详细介绍了如何通过建立线段树来实现区间概率查询及单点更新操作。文章还提供了一份完整的C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E. Memory and Casinos

题目连接:

http://codeforces.com/contest/712/problem/E

Description

There are n casinos lined in a row. If Memory plays at casino i, he has probability pi to win and move to the casino on the right (i + 1) or exit the row (if i = n), and a probability 1 - pi to lose and move to the casino on the left (i - 1) or also exit the row (if i = 1).

We say that Memory dominates on the interval i... j if he completes a walk such that,

He starts on casino i.
He never looses in casino i.
He finishes his walk by winning in casino j. 

Note that Memory can still walk left of the 1-st casino and right of the casino n and that always finishes the process.

Now Memory has some requests, in one of the following forms:

1 i a b: Set .
2 l r: Print the probability that Memory will dominate on the interval l... r, i.e. compute the probability that Memory will first leave the segment l... r after winning at casino r, if she starts in casino l. 

It is guaranteed that at any moment of time p is a non-decreasing sequence, i.e. pi ≤ pi + 1 for all i from 1 to n - 1.

Please help Memory by answering all his requests!

Input

The first line of the input contains two integers n and q(1 ≤ n, q ≤ 100 000), — number of casinos and number of requests respectively.

The next n lines each contain integers ai and bi (1 ≤ ai < bi ≤ 109) — is the probability pi of winning in casino i.

The next q lines each contain queries of one of the types specified above (1 ≤ a < b ≤ 109, 1 ≤ i ≤ n, 1 ≤ l ≤ r ≤ n).

It's guaranteed that there will be at least one query of type 2, i.e. the output will be non-empty. Additionally, it is guaranteed that p forms a non-decreasing sequence at all times.

Output

Print a real number for every request of type 2 — the probability that boy will "dominate" on that interval. Your answer will be considered correct if its absolute error does not exceed 10 - 4.

Namely: let's assume that one of your answers is a, and the corresponding answer of the jury is b. The checker program will consider your answer correct if |a - b| ≤ 10 - 4.

Sample Input

3 13
1 3
1 2
2 3
2 1 1
2 1 2
2 1 3
2 2 2
2 2 3
2 3 3
1 2 2 3
2 1 1
2 1 2
2 1 3
2 2 2
2 2 3
2 3 3

Sample Output

0.3333333333
0.2000000000
0.1666666667
0.5000000000
0.4000000000
0.6666666667
0.3333333333
0.2500000000
0.2222222222
0.6666666667
0.5714285714
0.6666666667

Hint

题意

在第i个位置,你有pi的概率走到i+1,有(1-pi)的概率走到i-1

单点修改概率

区间查询从L开始,从R离开的概率是多少

题解:

651210-20160913124200727-1003997003.png

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+7;
typedef pair<double,double> SgTreeDataType;
struct treenode
{
  int L , R  ;
  SgTreeDataType A;
  void updata(SgTreeDataType v)
  {
      A=v;
  }
};
pair<double,double>tmp=make_pair(1.0,0);
treenode tree[maxn*4];

inline void push_up(int o)
{
    tree[o].A.first = tree[o*2].A.first*tree[o*2+1].A.first;
    tree[o].A.second = tree[o*2].A.second + tree[o*2+1].A.second * tree[o*2].A.first;
}

inline void build_tree(int L , int R , int o)
{
    tree[o].L = L , tree[o].R = R;
    if (R > L)
    {
        int mid = (L+R) >> 1;
        build_tree(L,mid,o*2);
        build_tree(mid+1,R,o*2+1);
    }
}

inline void update(int QL,int QR,SgTreeDataType v,int o)
{
    int L = tree[o].L , R = tree[o].R;
    if (QL <= L && R <= QR) tree[o].updata(v);
    else
    {
        int mid = (L+R)>>1;
        if (QL <= mid) update(QL,QR,v,o*2);
        if (QR >  mid) update(QL,QR,v,o*2+1);
        push_up(o);
    }
}

inline SgTreeDataType query(int QL,int QR,int o)
{
    int L = tree[o].L , R = tree[o].R;
    if (QL <= L && R <= QR) return tree[o].A;
    else
    {
        int mid = (L+R)>>1;
        SgTreeDataType AA=tmp,BB=tmp,CC;
        if (QL <= mid) AA = query(QL,QR,2*o);
        if (QR > mid) BB = query(QL,QR,2*o+1);
        push_up(o);
        CC.first=AA.first*BB.first;
        CC.second=AA.second+BB.second*AA.first;
        return CC;
    }
}



int main()
{
    int n,q;
    scanf("%d%d",&n,&q);
    build_tree(1,n,1);
    for(int i=1;i<=n;i++)
    {
        double a,b;
        cin>>a>>b;
        double p = a/b;
        update(i,i,make_pair((1.0-p)/p,(1.0-p)/p),1);
    }
    for(int i=1;i<=q;i++)
    {
        int op,a,b,c;
        scanf("%d",&op);
        if(op==1)
        {
            scanf("%d%d%d",&a,&b,&c);
            double p = 1.0*b/(1.0*c);
            pair<double,double>D=make_pair((1-p)/p,(1-p)/p);
            update(a,a,D,1);
        }
        else
        {
            scanf("%d%d",&a,&b);
            double p = query(a,b,1).second;
            if(p<1e20)printf("%.12f\n",1.0/(1.0+p));
            else printf("0.000000000000\n");
        }
    }
    return 0;
}

转载于:https://www.cnblogs.com/qscqesze/p/5868047.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值