HDU 3578 Greedy Tino(双塔DP)

本文介绍了一道关于橙子承重的问题,通过动态规划算法解决如何使扁担两侧重量相同并达到最大承重的问题。输入包括橙子数量及各自重量,输出为最大可承载重量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Greedy Tino

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1194    Accepted Submission(s): 393


Problem Description
  Tino wrote a long long story. BUT! in Chinese...
  So I have to tell you the problem directly and discard his long long story. That is tino want to carry some oranges with "Carrying pole", and he must make two side of the Carrying pole are the same weight. Each orange have its' weight. So greedy tino want to know the maximum weight he can carry.
 

Input
The first line of input contains a number t, which means there are t cases of the test data.
  for each test case, the first line contain a number n, indicate the number of oranges.
  the second line contains n numbers, Wi, indicate the weight of each orange
  n is between 1 and 100, inclusive. Wi is between 0 and 2000, inclusive. the sum of Wi is equal or less than 2000.
 

Output
For each test case, output the maximum weight in one side of Carrying pole. If you can't carry any orange, output -1. Output format is shown in Sample Output.

 

Sample Input
1 5 1 2 3 4 5
 

Sample Output
Case 1: 7
双塔DP
注意如果有一个橘子是0,那么就符合条件
dp[i][j] 表示第i个橘子,两边差值
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>

using namespace std;
int n;
int a[105];
int dp[105][4005];
int main()
{
	int t;
	scanf("%d",&t);
	int cas=0;
	while(t--)
	{
		scanf("%d",&n);
		int num=0;
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&a[i]);
			if(a[i]==0)
				i--,n--,num++;
			
		}
		memset(dp,-1,sizeof(dp));
		dp[0][0+2000]=0;
		for(int i=1;i<=n;i++)
		{
			memcpy(dp[i],dp[i-1],sizeof(dp[i]));
			for(int j=-2000;j<=2000;j++)
			{
				
                if(dp[i-1][j+2000]==-1) continue;

				if(j<0)
				{
                    dp[i][j-a[i]+2000]=max(dp[i][j-a[i]+2000],dp[i-1][j+2000]+a[i]);
                    dp[i][j+a[i]+2000]=max(dp[i][j+a[i]+2000],dp[i-1][j+2000]+max(0,j+a[i]));
				}
				else
				{
					
					 dp[i][j+a[i]+2000]=max( dp[i][j+a[i]+2000],dp[i-1][j+2000]+a[i]);
                     dp[i][j-a[i]+2000]=max(dp[i][j-a[i]+2000],dp[i-1][j+2000]+max(0,a[i]-j));
				}
			}
		}
		
		if(dp[n][2000])
			printf("Case %d: %d\n",++cas,dp[n][2000]);
		else
		{
			if(num>=1)
				printf("Case %d: %d\n",++cas,0);
			else
			   printf("Case %d: %d\n",++cas,-1);
		}
	}
	return 0;
}


 

转载于:https://www.cnblogs.com/dacc123/p/8228646.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值