model Unnamed11
ThermalSystems.HeatExchangers.FinAndTube.MoistAirLiquid.CrossFlowHX
crossFlowHX(
liquidType=sim.liquidType1,
gasType=sim.gasType1,
redeclare model TubeSideHeatTransferModel =
ThermalSystems.HeatExchangers.FinAndTube.TransportPhenomena.TubeSideHeatTransfer.GnielinskiDittusBoelter,
redeclare model FinSideHeatTransferModel =
ThermalSystems.HeatExchangers.FinAndTube.TransportPhenomena.FinSideHeatTransfer.Haaf)
annotation (Placement(transformation(extent={{-14,-2},{14,26}})));
inner ThermalSystems.SystemInformationManager sim(redeclare
TSMedia.GasTypes.TSMedia_MoistAir gasType1, redeclare
TSMedia.LiquidTypes.TSMedia_Water liquidType1)
annotation (Placement(transformation(extent={{80,78},{100,98}})));
ThermalSystems.LiquidComponents.JunctionElements.VolumeJunction junction(
TInitial=298.15) annotation (Placement(transformation(
extent={{-4,-4},{4,4}},
rotation=90,
origin={-50,0})));
ThermalSystems.HeatExchangers.FinAndTube.MoistAirLiquid.CrossFlowHX
crossFlowHX1(
liquidType=sim.liquidType1,
gasType=sim.gasType1,
redeclare model TubeSideHeatTransferModel =
ThermalSystems.HeatExchangers.FinAndTube.TransportPhenomena.TubeSideHeatTransfer.GnielinskiDittusBoelter,
redeclare model FinSideHeatTransferModel =
ThermalSystems.HeatExchangers.FinAndTube.TransportPhenomena.FinSideHeatTransfer.Haaf)
annotation (Placement(transformation(extent={{-14,-66},{14,-38}})));
ThermalSystems.LiquidComponents.Boundaries.Boundary boundary(boundaryType="p")
annotation (Placement(transformation(extent={{28,-62},{36,-42}})));
ThermalSystems.LiquidComponents.Boundaries.Boundary boundary1(boundaryType="p")
annotation (Placement(transformation(extent={{32,0},{40,20}})));
ThermalSystems.LiquidComponents.Boundaries.Boundary boundary2(
liquidType=sim.liquidType1,
boundaryType="m_flow",
m_flowFixed=-2000,
V_flowFixed=-2)
annotation (Placement(transformation(extent={{-82,-10},{-74,10}})));
ThermalSystems.GasComponents.Boundaries.Boundary boundary3(boundaryType="V_flow",
V_flowFixed=-3.6)
annotation (Placement(transformation(extent={{56,28},{64,48}})));
ThermalSystems.GasComponents.Boundaries.Boundary boundary4(boundaryType="V_flow",
V_flowFixed=-3.6)
annotation (Placement(transformation(extent={{64,8},{72,28}})));
ThermalSystems.GasComponents.Boundaries.Boundary boundary5(boundaryType="p")
annotation (Placement(transformation(extent={{32,-28},{40,-8}})));
ThermalSystems.GasComponents.Boundaries.Boundary boundary6(boundaryType="p")
annotation (Placement(transformation(extent={{34,-88},{42,-68}})));
equation
connect(junction.portC, crossFlowHX.portA_liq) annotation (Line(
points={{-50,4},{-50,12},{-14,12}},
color={0,170,238},
thickness=0.5));
connect(junction.portB, crossFlowHX1.portA_liq) annotation (Line(
points={{-50,-4},{-50,-52},{-14,-52}},
color={0,170,238},
thickness=0.5));
connect(crossFlowHX1.portB_liq, boundary.port) annotation (Line(
points={{14,-52},{32,-52}},
color={0,170,238},
thickness=0.5));
connect(boundary1.port, crossFlowHX.portB_liq) annotation (Line(
points={{36,10},{36,12},{14,12}},
color={0,170,238},
thickness=0.5));
connect(boundary2.port, junction.portA) annotation (Line(
points={{-78,0},{-66,0},{-66,2.22045e-16},{-54,2.22045e-16}},
color={0,170,238},
thickness=0.5));
connect(boundary4.port, crossFlowHX1.portA_gas) annotation (Line(
points={{68,18},{76,18},{76,-32},{0,-32},{0,-38}},
color={255,153,0},
thickness=0.5));
connect(boundary3.port, crossFlowHX.portA_gas) annotation (Line(
points={{60,38},{0,38},{0,26}},
color={255,153,0},
thickness=0.5));
connect(crossFlowHX.portB_gas, boundary5.port) annotation (Line(
points={{0,-2},{0,-18},{36,-18}},
color={255,153,0},
thickness=0.5));
connect(crossFlowHX1.portB_gas, boundary6.port) annotation (Line(
points={{0,-66},{0,-78},{38,-78}},
color={255,153,0},
thickness=0.5));
annotation (uses(
ThermalSystems(version="1.10.0"),
TSMedia(version="1.10.0"),
Modelica(version="4.0.0")));
end Unnamed11;
在dymola中运行这段代码后报错Translation of Unnamed11:
The problem is structurally singular.
It has 1722 scalar unknowns and 1722 scalar equations.
The Real part has 1722 unknowns and 1722 equations.
The Integer part has 0 unknowns and 0 equations.
The Boolean part has 0 unknowns and 0 equations.
The String part has 0 unknowns and 0 equations.
Attempting to further localize singularity.
The model Unnamed11 is structurally singular.
The model includes the following hints:
A liquid mass flow rate cannot be uniquely calculated.
The reason could be that
- a hydraulic capacitor object (ThermalSystems.LiquidComponents.HydraulicCapacitor) or
- a liquid boundary type "p" is missing, to define the pressure inside a liquid circuit, or
- a connector of a liquid component is not connected.
The problem is structurally singular for the element type Real.
Translation aborted.
WARNINGS have been issued.
ERRORS have been issued.
请问是什么问题,该如何解决