【Task3(2天)】 模型构建

本文对比了逻辑回归、SVM、决策树、随机森林和XGBoost在预测金融贷款用户是否逾期的数据集上的表现。使用了准确率、查准率、召回率和F1分数作为评价指标,结果显示XGBoost的效果相对较好。
  • 用逻辑回归、svm和决策树;随机森林和XGBoost进行模型构建,评分方式任意,如准确率等。(不需要考虑模型调参)时间:2天

数据集下载

说明:这份数据集是金融数据(非原始数据,已经处理过了),我们要做的是预测贷款用户是否会逾期。表格中 "status" 是结果标签:0表示未逾期,1表示逾期。

1.数据处理

#这里用根据IV选择出来的特征
features = list(iv_result[iv_result['iv_value']>0.4]['feature'])
X = df[features]
y = df['status']
from sklearn.model_selection import train_test_split   #数据切分
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=2019)
from sklearn.preprocessing import StandardScaler  #标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.fit_transform(X_test)

2.模型导入,模型评估

二分类问题,我用准确率,查准率,召回率,f1指标来评估模型

#导入模型
from sklearn.linear_model import  LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
log_clf = LogisticRegression()
svc_clf = SVC()
tree_clf = DecisionTreeClassifier()
forest_clf = RandomForestClassifier()
xgb_clf = XGBClassifier()
models = {'log_clf':log_clf,'svc_clf':svc_clf,'tree_clf':tree_clf,'forest_clf':forest_clf,'xgb_clf':xgb_clf}
from sklearn.metrics import recall_score,precision_score,f1_score,accuracy_score
def metrics(models,X_train_scaled,X_test_scaled,y_train,y_test):
    results = pd.DataFrame(columns=['recall_score','precision_score','f1_score','accuracy_score'])
    for model in models:
        name = str(model)
        result = []
        model = models[model]
        model.fit(X_train_scaled,y_train)
        y_pre = model.predict(X_test_scaled)
        result.append(recall_score(y_pre,y_test))
        result.append(precision_score(y_pre,y_test))
        result.append(f1_score(y_pre,y_test))
        result.append(accuracy_score(y_pre,y_test))
        results.loc[name] = result
    return results
metrics(models,X_train_scaled,X_test_scaled,y_train,y_test)

xGBoost效果要好点,但总体看效果不是很好!!

 

转载于:https://www.cnblogs.com/Hero1best/p/10876721.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值