【深度学习】循环神经网络教程

本文深入讲解了循环神经网络(RNN)的原理及其在实际应用中的表现。从RNN的基本概念出发,探讨了为何需要RNN,介绍了Vanilla RNN模型,并详细解析了通过时间的反向传播(BPTT)。此外,还讨论了梯度消失与爆炸问题,并介绍了长短期记忆网络(LSTM)作为解决方案。最后,列举了RNN在多个领域的应用案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是在公司做培训时制作的PPT,教程对循环神经网络以及其应用进行了简单地介绍,主要分为以下六个部分:

  1. Why do we need Recurrent Neural Networks?
  2. Vanilla Recurrent Neural Network
  3. Backpropagation Through Time (BPTT)
  4. Gradient exploding/vanishing problem
  5. Long Short Term Memory (LSTM)
  6. The applications of RNNs

由于是花了很多时间做的,还是希望能帮助更多的人,故将其放到博客上来。

在这里插入图片描述
在这里插入图片描述

Why do we need Recurrent Neural Networks?

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Vanilla Recurrent Neural

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Backpropagation Through Time (BPTT)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Gradient exploding/vanishing problem

在这里插入图片描述
在这里插入图片描述

Long Short Term Memory (LSTM)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

The applications of RNNs

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

转载于:https://www.cnblogs.com/xugenpeng/p/10442712.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值