PRML笔记: GRAPHICAL MODELS (8-1)

本文探讨了贝叶斯网络及其对应的有向图模型,包括联合分布的分解过程及模型特性。文中详细介绍了多项式回归的贝叶斯模型,并讨论了生成模型的概念及其在图像识别中的应用。此外,还分析了离散变量与线性高斯模型在不同场景下的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

8.1 Bayesian Networks

 

clip_image001

对应的directed graphical model为

clip_image002

在joint distribution分解过程中,对称性丧失。

 

Fully connected graph: link between every pair of nodes (not interesting)

clip_image003

Absence of links (interesting): information about the properties of the classes of distributions represented by the graph.

 

Joint distribution可以分解为:

clip_image004 

(1) The key equation expresses the factorization properties of the joint distribution for a directed graphical model.

(2) 限制条件:Directed acyclic graphs (DAGs)

 

8.1.1 Example: Polynomial regression

clip_image005

Bayesian polynomial regression

  • Polynormial coefficients: w
  • Observed data: t
  • Input data: x
  • Noise variance: σ2
  • Hyperparameter: α

其中random variables有wt,而parameters为x, σ2α

 

Joint distribution of the random variables:

clip_image007

Predictive distribution:

clip_image008

8.1.2 Generative models

Ancestral sampling

(1) Sampling from joint distribution;

  • Sample from lower numbered node to higher numbered node.

(2) Sampling from marginal distribution

  • Sample from full joint distribution and only keep the values for required variables.

The primary role of latent variables: decompose complicated distribution over observed variables into simpler conditional distributions

 

例子--图像识别:

clip_image009

其中Object为discrete variable, 而Position和Orientation为continuous variables,最终目的是

clip_image010

The model describes the causal process to generate observed data, therefore, it is called generative model. In polynomial regression model, the observed variable x is not generated by default, so the model is not generative.

 

8.1.3 Discrete variables

Two K-state discrete variables:

clip_image011 

由于constraint clip_image001[1], (a)需要 K 2 – 1 parameters, (b)需要 2(K – 1) parameters

For fully connected graph of M discrete variables, 有K M – 1 parameters. 控制模型的参数数量有如下几种方法:

(a) 选择具有合适connectivity的图结构:

The chain of M discrete variables:

clip_image014 

共需要K – 1 + (M – 1) K (K – 1) parameters.

(b) sharing parameters:

clip_image016 

μ is shared by all of the conditional distributions p(xi| xi – 1), 共需要K 2 – 1 parameters.

(c) 使用参数模型

clip_image018 clip_image019

共需要2M + 1 parameters

 

8.1.4 Linear-Gaussian models

The conditional distribution for each node:

clip_image021

可以求得单个变量的mean和covariance:

clip_image022

clip_image023

从公式中可以看出,mean和covariance都可以表达为recursive form,这有助于推导joint distribution的mean和covariance.

Joint distribution是multivariate Gaussian distribution:

clip_image024

例子:

clip_image025

clip_image026

扩展:

若每个node都是multivariate Gaussian variable,

clip_image027

其joint distribution也为Gaussian

转载于:https://www.cnblogs.com/hh-earlydays/archive/2013/04/03/2997735.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值