day 7

模态框与高级搜索实现

修改模态框   只有在数据填充完以后才,点击确定,模态框才会消失。

此处的data-dismiss 写在controller中。即$("#addModal").modal("hide"),

 

高级搜索中填写两个参数给后台,具体见页面

 

 现在service中写好服务,定义好方法,图中.comsearch即传递数据的路径

在controller中给高级搜索加功能方法:

抓取数据时即将高级搜索的内容和表格数据中的内容绑定时 table.data=result.data 参考下图。

将info中的 val,enabled赋值给p中的templateName和enabled,然后直接将对象p传递给后台。

其中 condition为所填写的内容,

 

 

 

在interface接口处定义好方法,并传递参数。

 所有的页面发生数据传递时都在此处加载方法。

例图

 

转载于:https://www.cnblogs.com/myicons/p/9264595.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
是这样吗-- ================================================================================================= -- SQL SCRIPT FOR DAILY OUTPUT PLAN PROCESSING -- Description: This script refactors the business logic from '日产出目标.py' into a single, -- comprehensive SQL query. It processes work orders, corrects schedule times based on -- resource constraints, and calculates the daily output plan for the next 7 days. -- Target Table: daily_output_plan_final -- ================================================================================================= -- Step 0.1: Create the final output table if it doesn't exist CREATE TABLE IF NOT EXISTS daily_output_plan_final ( "批次" TEXT NOT NULL, "指令" TEXT, "线体" TEXT, "单板代码" TEXT, "单板名称" TEXT, "计划数量" REAL, "产出数量" REAL, "剩余数量" REAL, "计划开始时间" TEXT, "计划结束时间" TEXT, "实际开始时间" TEXT, "修正后计划开始时间" TEXT, "修正后计划结束时间" TEXT, "主工序" TEXT, "工序序号" INTEGER, "入库工序" TEXT, "入库时间" TEXT, "产品大类" TEXT, "工厂" TEXT, "责任人" TEXT, "day_1_output" REAL, "day_2_output" REAL, "day_3_output" REAL, "day_4_output" REAL, "day_5_output" REAL, "day_6_output" REAL, "day_7_output" REAL ); -- Step 0.2: Clean up the final table before insertion DELETE FROM daily_output_plan_final; -- Step 1: Use a CTE to prepare and pre-calculate data, similar to the initial Python DataFrame setup. WITH PreparedData AS ( SELECT wo.prodplanId AS "批次", wo.workOrderNo AS "指令", wo.lineName AS "线体", wo.itemNo AS "单板代码", wo.itemName AS "单板名称", CAST(wo.taskQty AS REAL) AS "计划数量", wo.scheduleStartDate AS "计划开始时间", wo.scheduleEndDate AS "计划结束时间", wo.actualStartDate AS "实际开始时间", wo.craftSection AS "主工序", wo.order_index AS "顺序号", CAST(wo.remark AS INTEGER) AS "工序序号", CAST(wo.outputQty AS REAL) AS "产出数量", wo.externalType AS "产品大类", wo.factoryName AS "工厂", -- Calculate remaining quantity, ensuring it's not negative MAX(0, CAST(wo.taskQty AS REAL) - CAST(wo.outputQty AS REAL)) AS "剩余数量", -- Merge craft data with defaults for calculation COALESCE(cd.unitPerHour, 60) AS "UPH", COALESCE(cd.operationEfficiency, 1) AS "作业效率", COALESCE(cd.transferTime, 0.5) AS "转机时间", COALESCE(cd.endingTime, 0.5) AS "收尾时间", -- Calculate production time in hours (MAX(0, CAST(wo.taskQty AS REAL) - CAST(wo.outputQty AS REAL)) / NULLIF(COALESCE(cd.unitPerHour, 60) * COALESCE(cd.operationEfficiency, 1), 0)) AS production_time, -- Determine if it's the last operation in the batch to mark for warehousing CASE WHEN wo.remark = MAX(wo.remark) OVER (PARTITION BY wo.prodplanId) THEN '是' ELSE '否' END AS "入库工序" FROM work_orders wo LEFT JOIN craft_data cd ON wo.itemNo = cd.itemNo AND wo.craftSection = cd.mainProcess WHERE -- Filter out completed or near-completed orders (CAST(wo.taskQty AS REAL) > 0 AND (CAST(wo.outputQty AS REAL) / CAST(wo.taskQty AS REAL)) <= 0.9) ), -- Step 2: Rank operations to establish a processing order for the recursive CTE RankedData AS ( SELECT *, -- Rank within the same batch ROW_NUMBER() OVER (PARTITION BY "批次" ORDER BY "工序序号") AS op_rank_in_batch, -- Global rank across all data for sequential processing ROW_NUMBER() OVER (ORDER BY "线体", "批次", "工序序号") AS global_rank, -- Pre-calculate total hours for this operation ("转机时间" + production_time + "收尾时间") AS total_hours FROM PreparedData ), -- Step 3: Recursive CTE to correct schedule times, simulating the Python loop CorrectedSchedule AS ( -- Anchor Member: Start with the first operation (global_rank = 1) SELECT rd.global_rank, rd."批次", rd."线体", rd."单板代码", rd."主工序", rd.op_rank_in_batch, rd.total_hours, -- Determine the initial start time COALESCE(rd."实际开始时间", rd."计划开始时间", STRFTIME('%Y-%m-%d %H:%M:%S', 'now', 'localtime')) AS corrected_start_time, -- Calculate the initial end time STRFTIME('%Y-%m-%d %H:%M:%S', COALESCE(rd."实际开始时间", rd."计划开始时间", STRFTIME('%Y-%m-%d %H:%M:%S', 'now', 'localtime')), '+' || rd.total_hours || ' hours') AS corrected_end_time, -- Initialize resource last-end-time trackers CASE WHEN rd."主工序" <> 'Test' THEN STRFTIME('%Y-%m-%d %H:%M:%S', COALESCE(rd."实际开始时间", rd."计划开始时间", STRFTIME('%Y-%m-%d %H:%M:%S', 'now', 'localtime')), '+' || rd.total_hours || ' hours') ELSE NULL END AS line_last_end, CASE WHEN rd."主工序" = 'Test' THEN STRFTIME('%Y-%m-%d %H:%M:%S', COALESCE(rd."实际开始时间", rd."计划开始时间", STRFTIME('%Y-%m-%d %H:%M:%S', 'now', 'localtime')), '+' || rd.total_hours || ' hours') ELSE NULL END AS item_test_last_end FROM RankedData rd WHERE rd.global_rank = 1 UNION ALL -- Recursive Member: Process subsequent operations one by one SELECT rd.global_rank, rd."批次", rd."线体", rd."单板代码", rd."主工序", rd.op_rank_in_batch, rd.total_hours, -- Determine the corrected start time based on dependencies ( SELECT MAX(ts) FROM ( -- Dependency 1: Previous operation in the same batch SELECT cs.corrected_end_time FROM CorrectedSchedule cs WHERE cs."批次" = rd."批次" AND cs.op_rank_in_batch = rd.op_rank_in_batch - 1 UNION ALL -- Dependency 2: Resource availability (line or test) SELECT CASE WHEN rd."主工序" = 'Test' THEN (SELECT MAX(cs2.item_test_last_end) FROM CorrectedSchedule cs2 WHERE cs2."单板代码" = rd."单板代码") ELSE (SELECT MAX(cs2.line_last_end) FROM CorrectedSchedule cs2 WHERE cs2."线体" = rd."线体") END UNION ALL -- Dependency 3: Its own original start time (or now if null) SELECT COALESCE(rd."实际开始时间", rd."计划开始时间", STRFTIME('%Y-%m-%d %H:%M:%S', 'now', 'localtime')) ) AS times(ts) ) AS corrected_start_time, -- Calculate the new end time based on the corrected start time STRFTIME('%Y-%m-%d %H:%M:%S', (SELECT MAX(ts) FROM ( SELECT cs.corrected_end_time FROM CorrectedSchedule cs WHERE cs."批次" = rd."批次" AND cs.op_rank_in_batch = rd.op_rank_in_batch - 1 UNION ALL SELECT CASE WHEN rd."主工序" = 'Test' THEN (SELECT MAX(cs2.item_test_last_end) FROM CorrectedSchedule cs2 WHERE cs2."单板代码" = rd."单板代码") ELSE (SELECT MAX(cs2.line_last_end) FROM CorrectedSchedule cs2 WHERE cs2."线体" = rd."线体") END UNION ALL SELECT COALESCE(rd."实际开始时间", rd."计划开始时间", STRFTIME('%Y-%m-%d %H:%M:%S', 'now', 'localtime')) ) AS times(ts)), '+' || rd.total_hours || ' hours' ) AS corrected_end_time, -- Update resource trackers for the next iteration CASE WHEN rd."主工序" <> 'Test' THEN STRFTIME('%Y-%m-%d %H:%M:%S', (SELECT MAX(ts) FROM (SELECT cs.corrected_end_time FROM CorrectedSchedule cs WHERE cs."批次" = rd."批次" AND cs.op_rank_in_batch = rd.op_rank_in_batch - 1 UNION ALL SELECT CASE WHEN rd."主工序" = 'Test' THEN (SELECT MAX(cs2.item_test_last_end) FROM CorrectedSchedule cs2 WHERE cs2."单板代码" = rd."单板代码") ELSE (SELECT MAX(cs2.line_last_end) FROM CorrectedSchedule cs2 WHERE cs2."线体" = rd."线体") END UNION ALL SELECT COALESCE(rd."实际开始时间", rd."计划开始时间", STRFTIME('%Y-%m-%d %H:%M:%S', 'now', 'localtime'))) AS times(ts)), '+' || rd.total_hours || ' hours') ELSE (SELECT MAX(cs2.line_last_end) FROM CorrectedSchedule cs2 WHERE cs2."线体" = rd."线体") END, CASE WHEN rd."主工序" = 'Test' THEN STRFTIME('%Y-%m-%d %H:%M:%S', (SELECT MAX(ts) FROM (SELECT cs.corrected_end_time FROM CorrectedSchedule cs WHERE cs."批次" = rd."批次" AND cs.op_rank_in_batch = rd.op_rank_in_batch - 1 UNION ALL SELECT CASE WHEN rd."主工序" = 'Test' THEN (SELECT MAX(cs2.item_test_last_end) FROM CorrectedSchedule cs2 WHERE cs2."单板代码" = rd."单板代码") ELSE (SELECT MAX(cs2.line_last_end) FROM CorrectedSchedule cs2 WHERE cs2."线体" = rd."线体") END UNION ALL SELECT COALESCE(rd."实际开始时间", rd."计划开始时间", STRFTIME('%Y-%m-%d %H:%M:%S', 'now', 'localtime'))) AS times(ts)), '+' || rd.total_hours || ' hours') ELSE (SELECT MAX(cs2.item_test_last_end) FROM CorrectedSchedule cs2 WHERE cs2."单板代码" = rd."单板代码") END FROM RankedData rd JOIN CorrectedSchedule cs ON rd.global_rank = cs.global_rank + 1 ), -- Step 4: Combine final schedule with other data and calculate daily outputs -- 修改FinalData:增加实际生产开始时间和计算生产持续时间 FinalData AS ( SELECT rd.*, cs.corrected_start_time, cs.corrected_end_time, -- 计算实际生产开始时间(取当前时间或修正后开始时间中较晚者) MAX(STRFTIME('%Y-%m-%d %H:%M:%S', 'now', 'localtime'), cs.corrected_start_time) AS actual_production_start, -- 计算生产持续时间(分钟) (JULIANDAY(cs.corrected_end_time) - JULIANDAY(cs.corrected_start_time)) * 24 * 60 AS total_duration_minutes, CASE WHEN rd."入库工序" = '是' THEN DATE(cs.corrected_end_time) ELSE NULL END AS "入库时间" FROM RankedData rd JOIN CorrectedSchedule cs ON rd.global_rank = cs.global_rank ), -- 重新设计每日产出计算 DailyOutputCalculation AS ( SELECT f.*, (SELECT "计调员" FROM part_category pc WHERE pc."单板代码" LIKE f."单板代码" || '%' AND pc."工厂" = f."工厂" LIMIT 1) AS "责任人", -- 计算每天的生产时间比例和产出 -- Day 1: 今天剩余时间 CASE WHEN f."入库工序" = '是' THEN ROUND(f."剩余数量" * (MAX(0, MIN(JULIANDAY(DATE('now', '+1 day')), JULIANDAY(f.corrected_end_time)) - MAX(JULIANDAY(f.actual_production_start), JULIANDAY('now'))) / (JULIANDAY(f.corrected_end_time) - JULIANDAY(f.actual_production_start))) ELSE 0 END AS day_1_output, -- Day 2: 完整的一天 CASE WHEN f."入库工序" = '是' THEN ROUND(f."剩余数量" * (MAX(0, MIN(JULIANDAY(DATE('now', '+2 day')), JULIANDAY(f.corrected_end_time)) - MAX(JULIANDAY(f.actual_production_start), JULIANDAY(DATE('now', '+1 day')))) / (JULIANDAY(f.corrected_end_time) - JULIANDAY(f.actual_production_start))) ELSE 0 END AS day_2_output, -- 重复相同逻辑计算day3-day7... ... FROM FinalData f ) -- Final Step: Insert the processed data into the permanent table INSERT INTO daily_output_plan_final ( "批次", "指令", "线体", "单板代码", "单板名称", "计划数量", "产出数量", "剩余数量", "计划开始时间", "计划结束时间", "实际开始时间", "修正后计划开始时间", "修正后计划结束时间", "主工序", "工序序号", "入库工序", "入库时间", "产品大类", "工厂", "责任人", "day_1_output", "day_2_output", "day_3_output", "day_4_output", "day_5_output", "day_6_output", "day_7_output" ) SELECT "批次", "指令", "线体", "单板代码", "单板名称", "计划数量", "产出数量", "剩余数量", "计划开始时间", "计划结束时间", "实际开始时间", corrected_start_time AS "修正后计划开始时间", corrected_end_time AS "修正后计划结束时间", "主工序", "工序序号", "入库工序", "入库时间", "产品大类", "工厂", "责任人", day_1_output, day_2_output, day_3_output, day_4_output, day_5_output, day_6_output, day_7_output FROM DailyOutputCalculation;
08-01
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值