Pumping lemma

本文介绍了计算理论中形式语言的泵引理,包括正则语言及上下文无关语言的泵引理。泵引理是一种重要的工具,用于证明特定语言不属于某语言类。文中详细解释了如何使用这些泵引理,并提供了相关的参考文献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In the theory of formal languages in computability theory, a pumping lemma or pumping argument states that, for a particular language to be a member of a language class, any sufficiently long string in the language contains a section, or sections, that can be removed, or repeated any number of times, with the resulting string remaining in that language. The proofs of these lemmas typically require counting arguments such as the pigeonhole principle.

The two most important examples are the pumping lemma for regular languages and the pumping lemma for context-free languagesOgden's lemmais a second, stronger pumping lemma for context-free languages.

These lemmas can be used to determine if a particular language is not in a given language class. However, they cannot be used to determine if a language is in a given class, since satisfying the pumping lemma is a necessary, but not sufficient, condition for class membership.

References[edit source | editbeta]

  • Michael Sipser (1997). Introduction to the Theory of Computation. PWS Publishing. ISBN 0-534-94728-X. Section 1.4: Nonregular Languages, pp. 77–83. Section 2.3: Non-context-free Languages, pp. 115–119.
  • Thomas A. Sudkamp (2006). Languages and Machines, Third edition. Adison Wesley. ISBN 0-321-32221-5. Chapter 6: Properties of Regular Languages pp. 205–210

转载于:https://www.cnblogs.com/threef/p/3250846.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值