POJ2739_Sum of Consecutive Prime Numbers【筛法求素数】【枚举】

本文介绍了一道算法题,要求计算一个正整数可以由多少种连续的素数序列相加得到。通过筛法预处理素数,并使用枚举方法找出所有可能的组合。
Sum of Consecutive Prime Numbers
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 19350 Accepted: 10619
Description


Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have?

For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime 
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. 
Your mission is to write a program that reports the number of representations for the given positive integer.
Input


The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.
Output


The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.
Sample Input


2
3
17
41
20
666
12
53
0
Sample Output


1
1
2
3
0
0
1
2
Source


Japan 2005

题目大意:

一个数能够由若干种连续的素数序列求和得到,比方说41 = 2+3+5+7+11+13 = 11+13+17 = 41

共同拥有三种不同的素数序列求和得到。给你一个数N,求满足N = 连续的素数序列和的方案数

思路:

非常easy的题目。可是用普通方法推断素数可能会超时,这里用了筛法求素数的方法直接用数组Prime

推断是否为素数,另开一个数组PrimeNum用来存全部的素数。

最后就是枚举,求得满足的方案数


#include<stdio.h>
#include<string.h>

int Prime[10010],PrimeNum[10010];

int IsPrime()//筛法求素数
{
    Prime[0] = Prime[1] = 0;

    for(int i = 2; i <= 10000; i++)
        Prime[i] = 1;
    for(int i = 2; i <= 10000; i++)
    {
        for(int j = i+i; j <= 10000; j+=i)
            Prime[j] = 0;
    }
    int num = 0;
    for(int i = 0; i <= 10000; i++)
        if(Prime[i])
            PrimeNum[num++] = i;

    return num;
}
int main()
{
    int num = IsPrime();
    int N;
    while(~scanf("%d",&N) && N!=0)
    {
        int count = 0;
        for(int i = 0; PrimeNum[i]<=N && i < num; i++)//枚举
        {
            int sum = 0;
            for(int j = i; PrimeNum[j]<=N && j < num; j++)
            {
                sum += PrimeNum[j];
                if(sum == N)
                {
                    count++;
                    break;
                }
                if(sum > N)
                    break;
            }
        }

        printf("%d\n",count);
    }

    return 0;
}


转载于:https://www.cnblogs.com/llguanli/p/7190492.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值