【洛谷 1516】青蛙的约会

博客围绕两只青蛙在纬度线上朝西跳能否相遇及相遇时间展开。给出青蛙A、B的出发点坐标、每次跳跃距离和纬度线总长等信息,通过建立方程[(x - y) + k(m - n)] % l = 0,经推导转化为扩展欧几里得方程求解,还给出判断是否有解及求最小解的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。

我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

输入输出格式

输入格式:

输入只包括一行5个整数x,y,m,n,L

其中0<x≠y < =2000000000,0 < m、n < =2000000000,0 < L < =2100000000。

输出格式:

输出碰面所需要的天数,如果永远不可能碰面则输出一行"Impossible"。

输入输出样例

输入样例#1: 复制
1 2 3 4 5
输出样例#1: 复制
4

题解:copy来的:

1.两只青蛙相遇,会有[(x-y)+k(m-n)]%l=0;(k表示跳的次数)。【方程来源】

2.将(x-y)记为A,(m-n)记为B,即(A+kB)%l=0,(A+kB)对l取余等于零可以等价为(A+kB)减去y个l等于零,即(A+kB)-yl=0,移项得kB-yl=-A。【方程】

3.将k换为x,得到xB-yl=A(由于将-A变成了A,在开始赋值时若B=m-n,A就为y-x,若B=n-m,A就为x-y),然后判断是否有解:令d为B与l的最大公约数gcd(B,l);方程两边同时除以d,得到

了xB/d-yl/d=A/d,由于d=gcd(B,l),所以B/d、l/d为整数,然后x、-y也是整数,所以方程成立的条件就是A/d也为整数。【证明方程成立】

4.这个方程就是扩展欧几里得exgcd(B,l,x,y)(忽略y前的负号),这样可以解出x,此时的x不是最优解,还要转换,即((x*(A/d))%(l/d)+(l/d))%(l/d)【求最小解的式子,不理解先背下来】。

代码(c++)【部分表示与解释中不同,也没关系,注意一下就好了】

#include<bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<cstdio>
using namespace std;
typedef long long ll;

ll x,y,m,n,l,r;
ll exgcd(ll a,ll b,ll &x,ll &y){
    if(b==0){
        x=1; y=0;
        return a;
    }
    r=exgcd(b,a%b,x,y);
    ll t=x;
    x=y;
    y=t-a/b*y;
    return r;
}
int main(){
    freopen("1516.in","r",stdin);
    freopen("1516.out","w",stdout);
    cin>>x>>y>>m>>n>>l;
    ll A=n-m;
    ll B=x-y;
    if(A<0) { A=-A; B=-B; }
    exgcd(A,l,x,y);
    if(B%r!=0)
        cout<<"Impossible";
    else cout<<((x*(B/r))%(l/r)+(l/r))%(l/r);
}

 

转载于:https://www.cnblogs.com/wuhu-JJJ/p/11158799.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值