luogu P2365 任务安排

嘟嘟嘟

如果常规dp,\(dp[i][j]\)表示前\(i\)个任务分\(j\)组,得到
\[dp[i][j] = min _ {k = 0} ^ {i - 1} (dp[k][j - 1] + (s * j + sumt[i]) * (sumc[i] - sumc[k]))\]
复杂度是\(O(n ^ 3)\)的。
因此我们要换一个思路。
在执行一批任务时,我们虽然不知道之前机器启动过多少次,但是可以确定机器因执行这批人武而花费的启动时间为\(s\),会累加到后面的任务上。
因此,令\(dp[i]\)表示把前\(i\)个任务分成若干批的最小费用,则
\[dp[i] = min_{j = 0} ^ {i - 1} (dp[j] + sumt[i] * (sumc[i] - sumc[j]) + s * (sumc[n] - sumc[j]))\]
\(sumt[i] * (sumc[i] - sumc[j])\)表示的是不考虑机器启动时前\(i\)批任务的费用。之所以可以这么写,是因为后面的\(s * (sumc[n] - sumc[j])\)已经把他们的时间算进去了,即包含在了\(dp[j]\)中。
时间复杂度\(O(n ^ 2)\)

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("") 
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 5e3 + 5;
inline ll read()
{
  ll ans = 0;
  char ch = getchar(), last = ' ';
  while(!isdigit(ch)) last = ch, ch = getchar();
  while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
  if(last == '-') ans = -ans;
  return ans;
}
inline void write(ll x)
{
  if(x < 0) x = -x, putchar('-');
  if(x >= 10) write(x / 10);
  putchar(x % 10 + '0');
}

int n, s;
int sumt[maxn], sumc[maxn];
int dp[maxn];

int main()
{
  n = read(); s = read();
  for(int i = 1, t, c; i <= n; ++i)
    {
      t = read(), sumt[i] = sumt[i - 1] + t;
      c = read(), sumc[i] = sumc[i - 1] + c;
    }
  Mem(dp, 0x3f); dp[0] = 0;
  for(int i = 1; i <= n; ++i)
    for(int j = 0; j < i; ++j)
      dp[i] = min(dp[i], dp[j] + sumt[i] * (sumc[i] - sumc[j]) + s * (sumc[n] - sumc[j]));
  write(dp[n]), enter;
  return 0;
}


上述算法已经能过此题,但还有一个\(O(n)\)的做——斜率优化。
简单来说就是对上述dp式进行变形,把常数、仅与\(i\)有关的项、仅与\(j\)有关的项以及\(i, j\)的乘积项分开。
具体维护下凸壳等想法不想讲了(懒),以后填坑吧
先上代码

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("") 
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e4 + 5;
inline ll read()
{
  ll ans = 0;
  char ch = getchar(), last = ' ';
  while(!isdigit(ch)) last = ch, ch = getchar();
  while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
  if(last == '-') ans = -ans;
  return ans;
}
inline void write(ll x)
{
  if(x < 0) x = -x, putchar('-');
  if(x >= 10) write(x / 10);
  putchar(x % 10 + '0');
}

int n, s;
ll sumt[maxn], sumc[maxn];
ll dp[maxn];
int q[maxn], l = 1, r = 1;

int main()
{
  n = read(); s = read();
  for(int i = 1, t, c; i <= n; ++i)
    {
      t = read(), sumt[i] = sumt[i - 1] + t;
      c = read(), sumc[i] = sumc[i - 1] + c;
    }
  Mem(dp, 0x3f); dp[0] = 0;
  for(int i = 1; i <= n; ++i)
    {
      while(l < r && (dp[q[l + 1]] - dp[q[l]]) <= (s + sumt[i]) * (sumc[q[l + 1]] - sumc[q[l]])) l++;
      dp[i] = dp[q[l]] - (s + sumt[i]) * sumc[q[l]] + sumt[i] * sumc[i] + s * sumc[n];
      while(l < r && (dp[q[r]] - dp[q[r - 1]]) * (sumc[i] - sumc[q[r]]) >= (dp[i] - dp[q[r]]) * (sumc[q[r]] - sumc[q[r - 1]])) r--;
      q[++r] = i;
    }
  write(dp[n]), enter;
  return 0;
}

转载于:https://www.cnblogs.com/mrclr/p/10125687.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值