题目大意
已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作:
操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z
操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和
操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z
操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和
基本概念
对路径和子树上的值进行整体操作,我们要用线段树。每个节点有个Id,对应线段树维护的区间(以后简称区间)上的点。Id要满足以下条件:
- 所有子树上的节点的Id构成一段连续的区间。
- 每个节点都属于且只属于一个重链,使得重链上的节点的Id构成一段连续的区间。
对于一个节点u,它的子节点v属于u所在重链当且仅当v是u的孩子中size(子树中元素的个数)最大的。此时v叫做u的重孩子。
连接两个属于不同重链的节点的是轻边,这两个节点的Id之差必大于1。
实现方法
预处理
先Dfs1求出每个节点的Size,深度,并通过Size求出每个节点的重儿子;再Dfs2求出重链(具体表示为每个节点所在链的链头),并按照Dfs序设置每个节点的Id和LastSonId(Dfs到的子树中的最后一个节点的Id)。
子树操作
直接用线段树操作当前节点的Id和LastSonId即可。
路径操作
当两个节点u,v所在重链的链头不同时,令u为所在链头深度较深的节点,用线段树对u的链头的Id和u的Id进行操作,然后u通过与u链头相连的轻边移动到u链头的父亲那里去,如此循环。最后,当u,v所在链头相同时,令u为深度较深的节点,用线段树对v的Id和u的Id操作即可。
注意事项
- 边的数量应当是节点数量的二倍,因为u到v一条边,v到u也一条边。
- 令u为所在链头深度较深的节点,而不是令u为深度较深的节点。
- 路径操作对uv链头不同时的循环完后,即使u==v,也要线段树操作。
- 由于题目中要求取模,所以struct SplitTree中没有一个+号。
#include <cstdio>
#include <cstring>
#include <cassert>
#include <algorithm>
using namespace std;
const int MAX_NODE = 100010, MAX_EDGE = MAX_NODE*2, MAX_RANGE_NODE = MAX_NODE * 10;
int P;
#define LOOP(i, n) for(int i=1; i<=n; i++)
struct SplitTree
{
private:
#define ModPlus(x, y) ((x)+((y)%P))%P
struct Node;
struct Edge;
struct Node
{
Node *HeavySon, *Top, *Father;
Edge *Head;
int Size, Id, LastSonId, Weight, Depth;
}_nodes[MAX_NODE], *Root;
struct Edge
{
Edge *Next;
Node *From, *To;
}*_edges[MAX_EDGE];
int _lastId, _edgeCnt;
struct RangeTree
{
private:
int Sum[MAX_RANGE_NODE], PlusTag[MAX_RANGE_NODE];
int TotRange;
void PushDown(int cur, int sl, int sr)
{
if (PlusTag[cur])
{
int mid = (sl + sr) / 2;
PlusTag[cur * 2] = ModPlus(PlusTag[cur * 2], PlusTag[cur]);
PlusTag[cur * 2 + 1] = ModPlus(PlusTag[cur * 2 + 1], PlusTag[cur]);
Sum[cur * 2] = ModPlus(Sum[cur * 2], PlusTag[cur] * (mid - sl + 1));
Sum[cur * 2 + 1] = ModPlus(Sum[cur * 2 + 1], PlusTag[cur] * (sr - mid));
PlusTag[cur] = 0;
}
}
void PullUp(int cur)
{
Sum[cur] = ModPlus(Sum[cur * 2], Sum[cur * 2 + 1]);
}
void Update(int cur, int sl, int sr, int al, int ar, int value)
{
if (al <= sl && sr <= ar)
{
Sum[cur] = ModPlus(Sum[cur], (sr - sl + 1)*value);
PlusTag[cur] = ModPlus(PlusTag[cur], value);
return;
}
PushDown(cur, sl, sr);
int mid = (sl + sr) / 2;
if (al <= mid)
Update(cur * 2, sl, mid, al, ar, value);
if (ar > mid)
Update(cur * 2 + 1, mid + 1, sr, al, ar, value);
PullUp(cur);
}
int Query(int cur, int sl, int sr, int al, int ar)
{
if (al <= sl&&sr <= ar)
return Sum[cur];
PushDown(cur, sl, sr);
int mid = (sl + sr) / 2, ans = 0;
if (al <= mid)
ans = ModPlus(ans, Query(cur * 2, sl, mid, al, ar));
if (ar > mid)
ans = ModPlus(ans, Query(cur * 2 + 1, mid + 1, sr, al, ar));
PullUp(cur);
return ans;
}
public:
void Update(int l, int r, int value)
{
Update(1, 1, TotRange, l, r, value);
}
int Query(int l, int r)
{
return Query(1, 1, TotRange, l, r);
}
void Init(int totRange)
{
memset(Sum, 0, sizeof(Sum));
memset(PlusTag, 0, sizeof(PlusTag));
TotRange = totRange;
}
}r;
Edge *NewEdge()
{
return _edges[++_edgeCnt] = new Edge();
}
void AddEdge(Node *from, Node *to)
{
Edge *e = NewEdge();
e->From = from;
e->To = to;
e->Next = e->From->Head;
e->From->Head = e;
}
void Dfs1(Node *cur, Node *father, int depth)
{
cur->Size = 1;
cur->Depth = depth;
cur->Father = father;
int maxSonSize = 0;
for (Edge *e = cur->Head; e; e = e->Next)
{
if (e->To != father)
{
Dfs1(e->To, cur, depth + 1);
cur->Size += e->To->Size;
if (e->To->Size > maxSonSize)
{
maxSonSize = e->To->Size;
cur->HeavySon = e->To;
}
}
}
}
void Dfs2(Node *cur, Node *top)
{
cur->Top = top;
cur->Id = ++_lastId;
r.Update(cur->Id, cur->Id, cur->Weight);
if (cur->HeavySon)
Dfs2(cur->HeavySon, top);
for (Edge *e = cur->Head; e; e = e->Next)
if (e->To != cur->HeavySon && e->To != cur->Father)
Dfs2(e->To, e->To);
cur->LastSonId = _lastId;
}
void UpdatePath(Node *u, Node *v, int value)
{
while (u->Top != v->Top)
{
if (u->Top->Depth < v->Top->Depth)
swap(u, v);
r.Update(u->Top->Id, u->Id, value);
u = u->Top->Father;
}
if (u->Depth < v->Depth)
swap(u, v);
r.Update(v->Id, u->Id, value);
}
int QueryPath(Node *u, Node *v)
{
int sum = 0;
while (u->Top != v->Top)
{
if (u->Top->Depth < v->Top->Depth)
swap(u, v);
sum = ModPlus(sum, r.Query(u->Top->Id, u->Id));
u = u->Top->Father;
}
if (u->Depth < v->Depth)
swap(u, v);
sum = ModPlus(sum, r.Query(v->Id, u->Id));
return sum;
}
void UpdateSubTree(Node *cur, int value)
{
r.Update(cur->Id, cur->LastSonId, value);
}
int QuerySubTree(Node *cur)
{
return r.Query(cur->Id, cur->LastSonId);
}
public:
SplitTree(int root, int totNode)
{
memset(_nodes, 0, sizeof(_nodes));
memset(_edges, 0, sizeof(_edges));
_lastId = _edgeCnt = 0;
Root = _nodes + root;
r.Init(totNode);
}
void SetNodeWeight(int id, int w)
{
_nodes[id].Weight = w;
}
void Build(int u, int v)
{
AddEdge(_nodes + u, _nodes + v);
AddEdge(_nodes + v, _nodes + u);
}
void Init()
{
Dfs1(Root, NULL, 1);
Dfs2(Root, Root);
}
void UpdatePath(int u, int v, int value)
{
UpdatePath(_nodes + u, _nodes + v, value);
}
int QueryPath(int u, int v)
{
return QueryPath(_nodes + u, _nodes + v);
}
void UpdateSubTree(int u, int value)
{
UpdateSubTree(_nodes + u, value);
}
int QuerySubTree(int u)
{
return QuerySubTree(_nodes + u);
}
};
int main()
{
int totNode, rootId, opCnt, w, u, v, op, val;
scanf("%d%d%d%d", &totNode, &opCnt, &rootId, &P);
static SplitTree g(rootId, totNode);
LOOP(i, totNode)
{
scanf("%d", &w);
g.SetNodeWeight(i, w);
}
LOOP(i, totNode - 1)
{
scanf("%d%d", &u, &v);
g.Build(u, v);
}
g.Init();
while (opCnt--)
{
scanf("%d", &op);
switch (op)
{
case 1://UpdatePath
scanf("%d%d%d", &u, &v, &val);
g.UpdatePath(u, v, val);
break;
case 2://QueryPath
scanf("%d%d", &u, &v);
printf("%d\n", g.QueryPath(u, v));
break;
case 3://UpdateSubTree
scanf("%d%d", &u, &val);
g.UpdateSubTree(u, val);
break;
case 4://QuerySubTree
scanf("%d", &u);
printf("%d\n", g.QuerySubTree(u));
//printf("100\n");
break;
}
}
return 0;
}