Expectation Maximization Algorithm

本文介绍了期望最大化(EM)算法,一种用于解决含有隐变量的最大似然估计问题的迭代法。EM算法依赖于Jensen不等式,广泛应用于机器学习中,如高斯混合模型和隐马尔可夫模型。文章还探讨了EM算法的应用原理、优点及局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

期望最大化算法EM。

简介

EM算法即期望最大化算法,由Dempster等人在1976年提出[1]。这是一种迭代法,用于求解含有隐变量的最大似然估计、最大后验概率估计问题。至于什么是隐变量,在后面会详细解释。EM算法在机器学习中有大量成功的应用,典型是求解高斯混合模型,隐马尔可夫模型。如果你要求解的机器学习模型中有隐变量存在,并且要估计模型的参数,EM算法很多时候是首选算法。

EM算法的推导、收敛性证明依赖于Jensen不等式,我们先对它做一简单介绍。Jensen不等式的表述是,如果f(x)是凸函数,x是随机变量,则下面不等式成立

在这里E是数学期望,对于离散型随机变量,数学期望是求和,对连续型随机变量则为求定积分。如果f(x)是一个严格凸函数,当且仅当x是常数时不等式取等号:

EM算法的目标是求解似然函数或后验概率的极值,而样本中具有无法观测的隐含变量。

应用原理

有人称之为上帝算法,只要有一些训练数据,再定义一个最大化函数,采用EM算法,利用计算机经过若干次迭代,就可以得到所需的模型。EM算法是自收敛的分类算法,既不需要事先设定类别也不需要数据见的两两比较合并等操作。缺点是当所要优化的函数不是凸函数时,EM算法容易给出局部最佳解,而不是最优解。

在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。

EM经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。

EM算法用于寻找隐藏参数的最大似然估计。该算法首先在E step中计算隐藏参数的似然估计,然后再M step中进行最大化,然后进行EM step的迭代直至收敛。应用场景之一是聚类问题,但EM算法本身并不是一个聚类算法。举个例子,GMM(高斯混合模型)和Kmeans在聚类时都使用了EM算法。

EM 算法还是许多非监督聚类算法的基础(如 Cheeseman et al. 1988 ),而且它是用于学习部分可观察马尔可夫模型( Partially Observable Markov Model )的广泛使用的 Baum-Welch 前向后向算法的基础。  

总结来说,EM算法就是通过迭代,最大化完整数据的对数似然函数的期望,来最大化不完整数据的对数似然函数。

参考文献

[1] Arthur P Dempster, Nan M Laird, Donald B Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the royal statistical society series b-methodological, 1976.

转载于:https://www.cnblogs.com/ytxwzqin/p/9121705.html

### Gaussian Mixture Model (GMM) Algorithms Explanation A **Gaussian Mixture Model (GMM)** is a probabilistic model that assumes all the data points are generated from a mixture of several Gaussian distributions with unknown parameters. Each component represents one cluster or group within the dataset. The key advantage of GMM over other clustering methods like k-means lies in its ability to capture more complex structures due to modeling each point as having partial membership across multiple clusters rather than being strictly assigned to only one cluster[^1]. #### Expectation-Maximization Algorithm for Parameter Estimation To estimate these unknown parameters, an iterative algorithm called Expectation-Maximization (EM) is commonly used. The EM algorithm alternates between two steps: - **E-step**: Compute responsibilities using current parameter estimates. - **M-step**: Re-estimate parameters based on computed responsibilities. This process repeats until convergence criteria are met or maximum iterations have been reached. For initializing each Gaussian model's parameters efficiently, especially under dynamic conditions such as moving objects detection scenarios described earlier where traditional approaches might struggle with slow learning rates and distinguishing shadows from actual movements, modifications were introduced into update equations allowing adaptation at different stages while also incorporating shadow detection techniques. ```python from sklearn.mixture import GaussianMixture import numpy as np # Sample Data Generation X = np.array([[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]) gmm = GaussianMixture(n_components=2) # Fit the model gmm.fit(X) print(f'Means:\n{gmm.means_}') print(f'Covariances:\n{gmm.covariances_}') # Predicting which distribution samples belong to labels = gmm.predict(X) print(f'Labels: {labels}') ``` In this code snippet provided above, `sklearn` library has been utilized to demonstrate how easily one can implement GMMs without delving too deeply into mathematical derivations behind it but still achieving powerful results suitable even when dealing with challenging environments mentioned previously regarding motion targets identification tasks through computer vision applications. --related questions-- 1. How does modifying update equations improve performance in detecting moving objects? 2. What specific changes occur during the E-step versus the M-step in the context of GMM? 3. Can you provide examples illustrating why GMM outperforms K-means in certain situations involving overlapping groups? 4. In what ways do initialization strategies impact final outcomes produced by GMM models?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值