Sightseeing tour HDU - 1956(混合欧拉回路)

本文探讨了在包含单向和双向边的图中寻找欧拉回路的问题,通过网络流算法解决节点出入度不平衡的挑战,确保图中存在欧拉回路的可能性。

题意:

  有n个点,m条边,其中有单向边和双向边,求是否存在欧拉回路

解析:

  刚开始想。。。判断一下每个点的度数不就好了。。。emm。。还是年轻啊。。

  判断是解决不了问题的,因为可能会有某两个点冲突,比如说一个点出度比入度大1,但它只有一条无向边,所以这条无向边要变成入边,但这条无向边的v点也是

  出度比入度大1,也是需要一条入边,所以这样就会冲突,如果直接判断的话不会判断出来,所以就用到了网络流,

  设想一下,我们把这条无向边的容量设为1,那么如果用了这条边,容量就会为0,所以不会重复使用,且不产生冲突

具体实现:

 不是我懒。。。是人家讲的真的很好嘛。。。

https://blog.youkuaiyun.com/wall_f/article/details/8237520

1、另x = |入度-出度|/2;对于不同的点有不同的x值,这个x值代表它们在邻接表中相应调整x条就能让出度等于入度。

2、以把图中的点转换为一个二分图,每个点的x值就是它们的点权。

3、置源点S向所有出度>入度的点连边;设置汇点T,所有入度大于出度的点连边,将各自的点权转换为边权。

4、最后将原图中所有暂时定向的无向边加上一个1的容量,方向不变,而有向边不能改变方向,不需连边。

可以发现,从源点S出发的一个单位流将会一个“无向边”的容量变为0,使得两端的点权各自减1,其实这就是在模拟一次对无向边方向的调整。当把图建好后,依靠最大流性质可以最大可能地无冲突调整边的方向,并最终使得每个点的点容量都达到满流。

最后,还要对那些图中出度等于入度的点做适当分析,它们作为一个“中间点”,由于流平衡性质,不会留下任何流量值,对于那些真正需要调整的点不会带来任何影响。

最后,如何得到答案?那就是检查从源点出发的每条边是否都满流,如果有一条边没有满流,说明有一个点没有调整到入度等于出度,于是整个图不存在欧拉回路。

这题保证了只有一个连通块。。虽然我还判断了一下。。。

 

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _  ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = 10010, INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
int n, m, s, t, cnt;
int f[maxn], deg[maxn], in[maxn], out[maxn], vis[maxn];
int d[maxn], head[maxn], cur[maxn];
set<int> ss;

int find(int x)
{
    return f[x] == x ? x : (f[x] = find(f[x]));
}

void init()
{
    for(int i = 1; i < maxn; i++) f[i] = i;
    mem(deg, 0);
    mem(in, 0);
    mem(head, -1);
    mem(out, 0);
    cnt = 0;
//    mem(vis, 0);
    ss.clear();
}

struct edge
{
    int u, v, c, next;
}Edge[maxn];

void add_(int u, int v, int c)
{
    Edge[cnt].u = u;
    Edge[cnt].v = v;
    Edge[cnt].c = c;
    Edge[cnt].next = head[u];
    head[u] = cnt++;
}

void add(int u, int v, int c)
{
    add_(u, v, c);
    add_(v, u, 0);
}

bool bfs()
{
    queue<int> Q;
    mem(d, 0);
    Q.push(s);
    d[s] = 1;
    while(!Q.empty())
    {
        int u = Q.front(); Q.pop();
        for(int i = head[u]; i != -1; i = Edge[i].next)
        {
            edge e = Edge[i];
            if(!d[e.v] && e.c > 0)
            {
                d[e.v] = d[e.u] + 1;
                Q.push(e.v);
                if(e.v == t) return 1;
            }
        }
    }
    return d[t] != 0;
}

int dfs(int u, int cap)
{
    int ret = 0;
    if(u == t || cap == 0)
        return cap;
    for(int &i = cur[u]; i != -1; i = Edge[i].next)
    {
        edge e = Edge[i];
        if(d[e.v] == d[u] + 1 && e.c > 0)
        {
            int V = dfs(e.v, min(cap, e.c));
            Edge[i].c -= V;
            Edge[i^1].c += V;
            ret += V;
            cap -= V;
            if(cap == 0) break;
        }
    }
    if(cap > 0) d[u] = -1;
    return ret;
}

int Dinic(int u)
{
    int ans = 0;
    while(bfs())
    {
        memcpy(cur, head, sizeof(head));
        ans += dfs(u, INF);
    }
    return ans;
}

int main()
{
    int T;
    cin >> T;
    while(T--)
    {
        int u, v, w;
        cin >> n >> m;
        init();
        s = 0, t = n + 1;
        for(int i = 1; i <= m; i++)
        {
            cin >> u >> v >> w;
            in[v]++, out[u]++;
            if(u != v && w == 0) add(u, v, 1);
            int l = find(u);
            int r = find(v);
            if(l != r) f[l] = r;
        }
        int flag = 0, m_sum = 0;
        for(int i = 1; i <= n; i++)
        {
            int x = find(i);
            ss.insert(x);
            if(abs(out[i] - in[i]) & 1)
            {
                flag = 1;
                break;
            }
            if(out[i] > in[i]) add(s, i, (out[i] - in[i]) / 2), m_sum += (out[i] - in[i]) / 2;
            else if(in[i] > out[i]) add(i, t, (in[i] - out[i]) / 2);

        }
        if(flag || ss.size() > 1)
        {
            cout << "impossible" << endl;
            continue;
        }
        if(m_sum == Dinic(s))
            cout << "possible" << endl;
        else
            cout << "impossible" << endl;

    }

    return 0;
}

 

转载于:https://www.cnblogs.com/WTSRUVF/p/9759296.html

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值