快速记 beta 1.08

基于安卓的个人理财软件的设计与实现--动图预览2

 

基于安卓的个人理财软件的设计与实现--动图预览
http://www.eoeandroid.com/thread-574362-1-1.html
(出处: eoe 移动开发者论坛)

 

基于安卓的个人理财软件的设计与实现--项目心得
http://www.eoeandroid.com/thread-574252-1-1.html
(出处: eoe 移动开发者论坛)

 

  ----------------------------------------------------------

2015/5/12

项目开源到github(不含ppt和毕业论文)

https://github.com/linmp4/quickmark

 

需要答辩ppt和毕业论文到这里下载:

 http://download.youkuaiyun.com/detail/linmp4/8693147

 ----------------------------------------------------------

beta 1.08版 快速记

2015/4/17

19号答辩,坑爹啊。稳定版,加入了添加多图片功能。却赶不上在列表上展示图片

 

 ----------------------------------------------------------

beta 1.07版 快速记

2015/4/14

想搞个用户反馈,不知道用哪个第三方比较好,最后选了友盟的,其实bmob也不错的

----------------------------------------------------------

 

beta 1.06版 快速记

2015/4/13

总算搞掂在线更新了,以后有更新会直接检测到的了

 

百度网盘:http://pan.baidu.com/s/1o61cgH0

----------------------------------------------------------

beta 1.05版 快速记

2015/4/11

鉴于我爸爸给了个定位记账的建议,现已加入豪华午餐

 

----------------------------------------------------------

第一版快速记

2015/4/10

快速记是本人毕业设计的作品,在此之前没学习过安卓,所以做的过程也比较吃力

主要参考了随手记和挖财,部分素材也是从它们提取的

主要实现简单的记账功能,目前的亮度是高级搜索,语音录入记账,支持手势密码

 

由于时间比较紧,所以没有针对其他分辨率优化,UI错位的问题就不要反映了

语音识别是调用百度语音api,所以理论上是支持粤语识别,但是我没做处理,所以不能录入

目测 安卓 4.0以下的机子不支持

测试机型:小米2a 1080x720P分辨率 安卓4.4

-------------------------------------------------------------------------

下一版计划实现:实时银行卡等类似短信的监控记账,实现在线升级的功能

---------------------------------------------------------------------------

百度网盘:http://pan.baidu.com/s/1o61cgH0

 

 

------------------------------------------------------------------------

 

转载于:https://www.cnblogs.com/linmp4/p/4415285.html

import tkinter as tk from tkinter import ttk, filedialog, messagebox import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense, Lambda from tensorflow.keras.optimizers import Adam from sklearn.preprocessing import MinMaxScaler import os import time mpl.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'Arial Unicode MS'] mpl.rcParams['axes.unicode_minus'] = False # 关键修复:使用 ASCII 减号 # 设置中文字体支持 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False class PINNModel(tf.keras.Model): def __init__(self, num_layers=4, hidden_units=32, dropout_rate=0.1, l2_reg=0.001, **kwargs): super(PINNModel, self).__init__(**kwargs) # 增加输入维度处理能力 self.dense_layers = [] self.bn_layers = [] # 批量归一化层 self.dropout_layers = [] # 添加L2正则化 self.l2_reg = l2_reg # 创建更深的网络结构 for i in range(num_layers): # 第一层使用更大的维度 units = hidden_units * 2 if i == 0 else hidden_units self.dense_layers.append( Dense(units, activation='swish', # 使用Swish激活函数 kernel_regularizer=tf.keras.regularizers.l2(l2_reg)) ) self.bn_layers.append(tf.keras.layers.BatchNormalization()) self.dropout_layers.append(tf.keras.layers.Dropout(dropout_rate)) # 添加跳跃连接层 self.residual_layer = Dense(hidden_units, activation='linear') # 最终输出层 self.final_layer = Dense(1, activation='linear', kernel_regularizer=tf.keras.regularizers.l2(l2_reg)) # 物理参数优化 - 使用更灵活的参数化方法 # 基本衰减系数 (使用指数确保正值) self.k1_log = tf.Variable(tf.math.log(0.1), trainable=True, dtype=tf.float32, name='k1_log') # 水位依赖的衰减系数 (使用softplus确保正值) self.k2_raw = tf.Variable(0.01, trainable=True, dtype=tf.float32, name='k2_raw') # 非线性项系数 (使用sigmoid约束在[0,1]) self.alpha_raw = tf.Variable(0.1, trainable=True, dtype=tf.float32, name='alpha_raw') # 外部影响系数 (使用tanh约束在[-0.2,0.2]) self.beta_raw = tf.Variable(0.05, trainable=True, dtype=tf.float32, name='beta_raw') @property def k1(self): """指数变换确保正值""" return tf.exp(self.k1_log) @property def k2(self): """Softplus变换确保正值""" return tf.math.softplus(self.k2_raw) * 0.1 # 约束在0-0.1之间 @property def alpha(self): """Sigmoid约束在[0,1]""" return tf.math.sigmoid(self.alpha_raw) @property def beta(self): """Tanh约束在[-0.2,0.2]""" return tf.math.tanh(self.beta_raw) * 0.2 def call(self, inputs, training=False): # 解包输入 t, h, dt, lag1, lag3, lag7, month_feats, season_feats = inputs # 组合所有特征 x = tf.concat([ t, h, dt, lag1, lag3, lag7, month_feats, season_feats, t * h, h * dt, t * dt, (t * h * dt), h * lag1, h * lag3, h * lag7, dt * lag1, dt * lag3, dt * lag7 ], axis=1) # 初始投影层 x_proj = Dense(64, activation='swish')(x) # 残差块 residual = self.residual_layer(x_proj) # 通过所有隐藏层(带批量归一化和dropout) for i, (dense_layer, bn_layer, dropout_layer) in enumerate(zip( self.dense_layers, self.bn_layers, self.dropout_layers)): # 第一层使用残差连接 if i == 0: x = dense_layer(x_proj) x = bn_layer(x, training=training) x = dropout_layer(x, training=training) x = x + residual # 残差连接 else: x = dense_layer(x) x = bn_layer(x, training=training) x = dropout_layer(x, training=training) # 注意力机制 - 增强重要特征 attention = Dense(x.shape[-1], activation='sigmoid')(x) x = x * attention return self.final_layer(x) def physics_loss(self, t, h_current, dt, training=False): """改进的物理损失计算""" # 创建零值占位符 batch_size = tf.shape(t)[0] zeros = tf.zeros((batch_size, 1), dtype=tf.float32) zeros2 = tf.zeros((batch_size, 2), dtype=tf.float32) # 预测下一时刻水位 h_next_pred = self([t, h_current, dt, zeros, zeros, zeros, zeros2, zeros2], training=training) # 物理方程计算 - 使用改进的公式 # 非线性衰减项 decay_factor = self.k1 + self.k2 * h_current exponent = -decay_factor * dt exponent = tf.clip_by_value(exponent, -50.0, 50.0) decay_term = h_current * tf.exp(exponent) # 外部影响项(考虑时间依赖性) external_factor = self.alpha * self.beta * dt external_factor = tf.clip_by_value(external_factor, -10.0, 10.0) external_term = self.alpha * (1 - tf.exp(-external_factor)) # 残差计算 residual = h_next_pred - (decay_term + external_term) # 添加物理参数正则化(鼓励简单物理模型) param_reg = 0.01 * (tf.abs(self.k1) + tf.abs(self.k2) + tf.abs(self.alpha) + tf.abs(self.beta)) return tf.reduce_mean(tf.square(residual)) + param_reg class DamSeepageModel: def __init__(self, root): self.root = root self.root.title("大坝渗流预测模型(PINNs)") self.root.geometry("1200x800") # 初始化数据 self.train_df = None #训练集 self.test_df = None #测试集 self.model = None self.scaler = MinMaxScaler(feature_range=(0, 1)) self.evaluation_metrics = {} # 创建主界面 self.create_widgets() def create_widgets(self): # 创建主框架 main_frame = ttk.Frame(self.root, padding=10) main_frame.pack(fill=tk.BOTH, expand=True) # 左侧控制面板 control_frame = ttk.LabelFrame(main_frame, text="模型控制", padding=10) control_frame.pack(side=tk.LEFT, fill=tk.Y, padx=5, pady=5) # 文件选择部分 file_frame = ttk.LabelFrame(control_frame, text="数据文件", padding=10) file_frame.pack(fill=tk.X, pady=5) # 训练集选择 ttk.Label(file_frame, text="训练集:").grid(row=0, column=0, sticky=tk.W, pady=5) self.train_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.train_file_var, width=30, state='readonly').grid(row=0, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("train")).grid(row=0, column=2) # 测试集选择 ttk.Label(file_frame, text="测试集:").grid(row=1, column=0, sticky=tk.W, pady=5) self.test_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.test_file_var, width=30, state='readonly').grid(row=1, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("test")).grid(row=1, column=2) # PINNs参数设置 param_frame = ttk.LabelFrame(control_frame, text="PINNs参数", padding=10) param_frame.pack(fill=tk.X, pady=10) # 验证集切分比例 ttk.Label(param_frame, text="验证集比例:").grid(row=0, column=0, sticky=tk.W, pady=5) self.split_ratio_var = tk.DoubleVar(value=0.2) ttk.Spinbox(param_frame, from_=0, to=1, increment=0.05, textvariable=self.split_ratio_var, width=10).grid(row=0, column=1, padx=5) # 隐藏层数量 ttk.Label(param_frame, text="网络层数:").grid(row=1, column=0, sticky=tk.W, pady=5) self.num_layers_var = tk.IntVar(value=4) ttk.Spinbox(param_frame, from_=2, to=8, increment=1, textvariable=self.num_layers_var, width=10).grid(row=1, column=1, padx=5) # 每层神经元数量 ttk.Label(param_frame, text="神经元数/层:").grid(row=2, column=0, sticky=tk.W, pady=5) self.hidden_units_var = tk.IntVar(value=32) ttk.Spinbox(param_frame, from_=16, to=128, increment=4, textvariable=self.hidden_units_var, width=10).grid(row=2, column=1, padx=5) # 训练轮次 ttk.Label(param_frame, text="训练轮次:").grid(row=3, column=0, sticky=tk.W, pady=5) self.epochs_var = tk.IntVar(value=500) ttk.Spinbox(param_frame, from_=100, to=2000, increment=100, textvariable=self.epochs_var, width=10).grid(row=3, column=1, padx=5) # 物理损失权重 ttk.Label(param_frame, text="物理损失权重:").grid(row=4, column=0, sticky=tk.W, pady=5) self.physics_weight_var = tk.DoubleVar(value=0.5) ttk.Spinbox(param_frame, from_=0.1, to=1.0, increment=0.1, textvariable=self.physics_weight_var, width=10).grid(row=4, column=1, padx=5) # 控制按钮 btn_frame = ttk.Frame(control_frame) btn_frame.pack(fill=tk.X, pady=10) ttk.Button(btn_frame, text="训练模型", command=self.train_model).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="预测结果", command=self.predict).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="保存结果", command=self.save_results).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="重置", command=self.reset).pack(side=tk.RIGHT, padx=5) # 状态栏 self.status_var = tk.StringVar(value="就绪") status_bar = ttk.Label(control_frame, textvariable=self.status_var, relief=tk.SUNKEN, anchor=tk.W) status_bar.pack(fill=tk.X, side=tk.BOTTOM) # 右侧结果显示区域 result_frame = ttk.Frame(main_frame) result_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True, padx=5, pady=5) # 创建标签页 self.notebook = ttk.Notebook(result_frame) self.notebook.pack(fill=tk.BOTH, expand=True) # 损失曲线标签页 self.loss_frame = ttk.Frame(self.notebook) self.notebook.add(self.loss_frame, text="训练损失") # 预测结果标签页 self.prediction_frame = ttk.Frame(self.notebook) self.notebook.add(self.prediction_frame, text="预测结果") # 指标显示 self.metrics_var = tk.StringVar() metrics_label = ttk.Label( self.prediction_frame, textvariable=self.metrics_var, font=('TkDefaultFont', 10, 'bold'), relief='ridge', padding=5 ) metrics_label.pack(fill=tk.X, padx=5, pady=5) # 初始化绘图区域 self.fig, self.ax = plt.subplots(figsize=(10, 6)) self.canvas = FigureCanvasTkAgg(self.fig, master=self.prediction_frame) self.canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True) # 损失曲线画布 self.loss_fig, self.loss_ax = plt.subplots(figsize=(10, 4)) self.loss_canvas = FigureCanvasTkAgg(self.loss_fig, master=self.loss_frame) self.loss_canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True) def select_file(self, file_type): """选择Excel文件""" file_path = filedialog.askopenfilename( title=f"选择{file_type}集Excel文件", filetypes=[("Excel文件", "*.xlsx *.xls"), ("所有文件", "*.*")] ) if file_path: try: df = pd.read_excel(file_path) # 时间特征处理 time_features = ['year', 'month', 'day'] missing_time_features = [feat for feat in time_features if feat not in df.columns] if missing_time_features: messagebox.showerror("列名错误", f"Excel文件缺少预处理后的时间特征列: {', '.join(missing_time_features)}") return # 创建时间戳列 (增强兼容性) time_cols = ['year', 'month', 'day'] if 'hour' in df.columns: time_cols.append('hour') if 'minute' in df.columns: time_cols.append('minute') if 'second' in df.columns: time_cols.append('second') # 填充缺失的时间单位 for col in ['hour', 'minute', 'second']: if col not in df.columns: df[col] = 0 df['datetime'] = pd.to_datetime(df[time_cols]) # 设置时间索引 df = df.set_index('datetime') # 计算相对时间(天) df['days'] = (df.index - df.index[0]).days # 保存数据 if file_type == "train": self.train_df = df self.train_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载训练集: {len(self.train_df)}条数据") else: self.test_df = df self.test_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载测试集: {len(self.test_df)}条数据") except Exception as e: messagebox.showerror("文件错误", f"读取文件失败: {str(e)}") def calculate_metrics(self, y_true, y_pred): """计算评估指标""" from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score mse = mean_squared_error(y_true, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y_true, y_pred) non_zero_idx = np.where(y_true != 0)[0] if len(non_zero_idx) > 0: mape = np.mean(np.abs((y_true[non_zero_idx] - y_pred[non_zero_idx]) / y_true[non_zero_idx])) * 100 else: mape = float('nan') r2 = r2_score(y_true, y_pred) return { 'MSE': mse, 'RMSE': rmse, 'MAE': mae, 'MAPE': mape, 'R2': r2 } def train_model(self): """训练PINNs模型(带早停机制+训练指标监控,无指标绘图)""" if self.train_df is None: messagebox.showwarning("警告", "请先选择训练集文件") return try: self.status_var.set("正在预处理数据...") self.root.update() # 从训练集中切分训练子集和验证子集(时间顺序切分) split_ratio = 1 - self.split_ratio_var.get() split_idx = int(len(self.train_df) * split_ratio) train_subset = self.train_df.iloc[:split_idx] valid_subset = self.train_df.iloc[split_idx:] # 检查数据量是否足够 if len(train_subset) < 2 or len(valid_subset) < 2: messagebox.showerror("数据错误", "训练集数据量不足(至少需要2个时间步)") return # 数据预处理(训练子集拟合scaler,验证子集用相同scaler) train_subset_scaled = self.scaler.fit_transform(train_subset[['水位']]) valid_subset_scaled = self.scaler.transform(valid_subset[['水位']]) # 准备训练数据(原始值用于指标计算) t_train = train_subset['days'].values[1:].reshape(-1, 1).astype(np.float32) h_train = train_subset_scaled[:-1].astype(np.float32) h_next_train_scaled = train_subset_scaled[1:].astype(np.float32) # 归一化后的标签 h_next_train_true = train_subset['水位'].values[1:].reshape(-1, 1) # 原始真实值(反归一化前) # 准备验证数据(原始值用于指标计算) t_valid = valid_subset['days'].values[1:].reshape(-1, 1).astype(np.float32) h_valid = valid_subset_scaled[:-1].astype(np.float32) h_next_valid_scaled = valid_subset_scaled[1:].astype(np.float32) # 归一化后的标签 h_next_valid_true = valid_subset['水位'].values[1:].reshape(-1, 1) # 原始真实值 # 创建模型和优化器 self.model = PINNModel( num_layers=self.num_layers_var.get(), hidden_units=self.hidden_units_var.get() ) optimizer = Adam(learning_rate=0.001) # 构建训练/验证数据集 train_dataset = tf.data.Dataset.from_tensor_slices(((t_train, h_train), h_next_train_scaled)) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32) valid_dataset = tf.data.Dataset.from_tensor_slices(((t_valid, h_valid), h_next_valid_scaled)) valid_dataset = valid_dataset.batch(32) # 验证集无需shuffle # 损失记录(新增指标记录) train_data_loss_history = [] physics_loss_history = [] valid_data_loss_history = [] # 新增:训练集和验证集的指标历史(MSE, RMSE等) train_metrics_history = [] # 每个元素是字典(如{'MSE':..., 'RMSE':...}) valid_metrics_history = [] # 早停机制参数 patience = int(self.epochs_var.get() / 3) min_delta = 1e-4 best_valid_loss = float('inf') wait = 0 best_epoch = 0 best_weights = None start_time = time.time() # 自定义训练循环(新增指标计算) for epoch in range(self.epochs_var.get()): # 训练阶段 epoch_train_data_loss = [] epoch_physics_loss = [] # 收集训练预测值(归一化后) train_pred_scaled = [] for step, ((t_batch, h_batch), h_next_batch) in enumerate(train_dataset): # 在训练循环中: with tf.GradientTape() as tape: # 预测下一时刻水位 h_pred = self.model([t_batch, h_batch, dt_batch, ...], training=True) data_loss = tf.reduce_mean(tf.square(h_next_batch - h_pred)) # 计算物理损失(包含参数正则化) physics_loss = self.model.physics_loss(t_batch, h_batch, dt_batch, training=True) # 动态调整物理损失权重 current_physics_weight = ... # 添加L2正则化损失(从模型中收集) l2_loss = tf.reduce_sum(self.model.losses) # 总损失 loss = data_loss + current_physics_weight * physics_loss + l2_loss grads = tape.gradient(loss, self.model.trainable_variables) optimizer.apply_gradients(zip(grads, self.model.trainable_variables)) epoch_train_data_loss.append(data_loss.numpy()) epoch_physics_loss.append(physics_loss.numpy()) train_pred_scaled.append(h_pred.numpy()) # 保存训练预测值(归一化) # 合并训练预测值(归一化后) train_pred_scaled = np.concatenate(train_pred_scaled, axis=0) # 反归一化得到原始预测值 train_pred_true = self.scaler.inverse_transform(train_pred_scaled) # 计算训练集指标(使用原始真实值和预测值) train_metrics = self.calculate_metrics( y_true=h_next_train_true.flatten(), y_pred=train_pred_true.flatten() ) train_metrics_history.append(train_metrics) # 验证阶段 epoch_valid_data_loss = [] valid_pred_scaled = [] for ((t_v_batch, h_v_batch), h_v_next_batch) in valid_dataset: h_v_pred = self.model([t_v_batch, h_v_batch]) valid_data_loss = tf.reduce_mean(tf.square(h_v_next_batch - h_v_pred)) epoch_valid_data_loss.append(valid_data_loss.numpy()) valid_pred_scaled.append(h_v_pred.numpy()) # 保存验证预测值(归一化) # 合并验证预测值(归一化后) valid_pred_scaled = np.concatenate(valid_pred_scaled, axis=0) # 反归一化得到原始预测值 valid_pred_true = self.scaler.inverse_transform(valid_pred_scaled) # 计算验证集指标(使用原始真实值和预测值) valid_metrics = self.calculate_metrics( y_true=h_next_valid_true.flatten(), y_pred=valid_pred_true.flatten() ) valid_metrics_history.append(valid_metrics) # 计算平均损失 avg_train_data_loss = np.mean(epoch_train_data_loss) avg_physics_loss = np.mean(epoch_physics_loss) avg_valid_data_loss = np.mean(epoch_valid_data_loss) # 记录损失 train_data_loss_history.append(avg_train_data_loss) physics_loss_history.append(avg_physics_loss) valid_data_loss_history.append(avg_valid_data_loss) # 早停机制逻辑(与原代码一致) current_valid_loss = avg_valid_data_loss if current_valid_loss < best_valid_loss - min_delta: best_valid_loss = current_valid_loss best_epoch = epoch + 1 wait = 0 best_weights = self.model.get_weights() else: wait += 1 if wait >= patience: self.status_var.set(f"触发早停!最佳轮次: {best_epoch},最佳验证损失: {best_valid_loss:.4f}") if best_weights is not None: self.model.set_weights(best_weights) break # 更新状态(新增指标显示) if epoch % 10 == 0: # 提取当前训练/验证的关键指标(如RMSE) train_rmse = train_metrics['RMSE'] valid_rmse = valid_metrics['RMSE'] train_r2 = train_metrics['R2'] valid_r2 = valid_metrics['R2'] k_value = self.model.k.numpy() elapsed = time.time() - start_time self.status_var.set( f"训练中 | 轮次: {epoch + 1}/{self.epochs_var.get()} | " f"训练RMSE: {train_rmse:.4f} | 验证RMSE: {valid_rmse:.4f} | " f"训练R²: {train_r2:.4f} | 验证R²: {valid_r2:.4f} | " f"k: {k_value:.6f} | 时间: {elapsed:.1f}秒 | 早停等待: {wait}/{patience}" ) self.root.update() # 绘制损失曲线(仅保留原始损失曲线) self.loss_ax.clear() epochs_range = range(1, len(train_data_loss_history) + 1) self.loss_ax.plot(epochs_range, train_data_loss_history, 'b-', label='训练数据损失') self.loss_ax.plot(epochs_range, physics_loss_history, 'r--', label='物理损失') self.loss_ax.plot(epochs_range, valid_data_loss_history, 'g-.', label='验证数据损失') self.loss_ax.set_title('PINNs训练与验证损失') self.loss_ax.set_xlabel('轮次') self.loss_ax.set_ylabel('损失', rotation=0) self.loss_ax.legend() self.loss_ax.grid(True, alpha=0.3) self.loss_ax.set_yscale('log') self.loss_canvas.draw() # 训练完成提示(保留指标总结) elapsed = time.time() - start_time if wait >= patience: completion_msg = ( f"早停触发 | 最佳轮次: {best_epoch} | 最佳验证损失: {best_valid_loss:.4f} | " f"最佳验证RMSE: {valid_metrics_history[best_epoch - 1]['RMSE']:.4f} | " f"总时间: {elapsed:.1f}秒" ) else: completion_msg = ( f"训练完成 | 总轮次: {self.epochs_var.get()} | " f"最终训练RMSE: {train_metrics_history[-1]['RMSE']:.4f} | " f"最终验证RMSE: {valid_metrics_history[-1]['RMSE']:.4f} | " f"最终训练R²: {train_metrics_history[-1]['R2']:.4f} | " f"最终验证R²: {valid_metrics_history[-1]['R2']:.4f} | " f"总时间: {elapsed:.1f}秒" ) # 在训练循环结束后,保存训练历史 self.train_history = { 'train_data_loss': train_data_loss_history, 'physics_loss': physics_loss_history, 'valid_data_loss': valid_data_loss_history, 'train_metrics': train_metrics_history, 'valid_metrics': valid_metrics_history } self.status_var.set(completion_msg) messagebox.showinfo("训练完成", f"PINNs模型训练成功完成!\n{completion_msg}") except Exception as e: messagebox.showerror("训练错误", f"模型训练失败:\n{str(e)}") self.status_var.set("训练失败") def predict(self): """使用PINNs模型进行预测(优化时间轴刻度与网格线)""" if self.model is None: messagebox.showwarning("警告", "请先训练模型") return if self.test_df is None: messagebox.showwarning("警告", "请先选择测试集文件") return try: self.status_var.set("正在生成预测...") self.root.update() # 预处理测试数据 test_scaled = self.scaler.transform(self.test_df[['水位']]) # 准备时间特征 t_test = self.test_df['days'].values.reshape(-1, 1).astype(np.float32) # 递归预测 predictions = [] for i in range(len(t_test)): h_current = np.array([[test_scaled[i][0]]]).astype(np.float32) h_pred = self.model([t_test[i:i + 1], h_current]) predictions.append(h_pred.numpy()[0][0]) # 反归一化 predictions = np.array(predictions).reshape(-1, 1) predictions = self.scaler.inverse_transform(predictions) actual_values = self.scaler.inverse_transform(test_scaled) # 创建时间索引(确保为DatetimeIndex) test_time = self.test_df.index # 假设为pandas DatetimeIndex类型 # 清除现有图表 self.ax.clear() # 绘制结果 self.ax.plot(test_time, actual_values, 'b-', label='真实值') self.ax.plot(test_time, predictions, 'r--', label='预测值') self.ax.set_title('大坝渗流水位预测结果(PINNs)') self.ax.set_xlabel('时间') self.ax.set_ylabel('测压管水位', rotation=0) self.ax.legend() # 添加网格和样式(优化时间轴) import matplotlib.dates as mdates # 导入日期刻度工具 # 设置x轴刻度:主刻度(年份)和次要刻度(每2个月) # 主刻度:每年11日(或数据起始年的第一个时间点) self.ax.xaxis.set_major_locator(mdates.YearLocator()) self.ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y')) # 仅显示年份 # 次要刻度:每2个月(如2月、4月、6月...) self.ax.xaxis.set_minor_locator(mdates.MonthLocator(interval=2)) # 添加次要网格线(每2个月的竖直虚线) self.ax.grid(which='minor', axis='x', linestyle='--', color='gray', alpha=0.3) # 主要网格线(可选,保持原有水平网格) self.ax.grid(which='major', axis='y', linestyle='-', color='lightgray', alpha=0.5) # 优化刻度标签显示(避免重叠) self.ax.tick_params(axis='x', which='major', rotation=0, labelsize=10) self.ax.tick_params(axis='x', which='minor', length=3) # 次要刻度线长度 # 计算并显示评估指标(保持原有逻辑) self.evaluation_metrics = self.calculate_metrics( actual_values.flatten(), predictions.flatten() ) metrics_text = ( f"MSE: {self.evaluation_metrics['MSE']:.4f} | " f"RMSE: {self.evaluation_metrics['RMSE']:.4f} | " f"MAE: {self.evaluation_metrics['MAE']:.4f} | " f"MAPE: {self.evaluation_metrics['MAPE']:.2f}% | " f"R²: {self.evaluation_metrics['R2']:.4f}" ) # 更新文本标签 self.metrics_var.set(metrics_text) # 在图表上添加指标(位置调整,避免覆盖时间刻度) self.ax.text( 0.5, 1.08, metrics_text, # 略微上移避免与网格重叠 transform=self.ax.transAxes, ha='center', fontsize=10, bbox=dict(facecolor='white', alpha=0.8) ) # 调整布局(重点优化时间轴边距) plt.tight_layout(pad=2.0) # 增加底部边距避免刻度标签被截断 self.canvas.draw() # 保存预测结果(保持原有逻辑) self.predictions = predictions self.actual_values = actual_values self.test_time = test_time self.status_var.set("预测完成,结果已显示") except Exception as e: messagebox.showerror("预测错误", f"预测失败:\n{str(e)}") self.status_var.set("预测失败") def save_results(self): """保存预测结果和训练历史数据""" if not hasattr(self, 'predictions') or not hasattr(self, 'train_history'): messagebox.showwarning("警告", "请先生成预测结果并完成训练") return # 选择保存路径 save_path = filedialog.asksaveasfilename( defaultextension=".xlsx", filetypes=[("Excel文件", "*.xlsx"), ("所有文件", "*.*")], title="保存结果" ) if not save_path: return try: # 1. 创建预测结果DataFrame result_df = pd.DataFrame({ '时间': self.test_time, '实际水位': self.actual_values.flatten(), '预测水位': self.predictions.flatten() }) # 2. 创建评估指标DataFrame metrics_df = pd.DataFrame([self.evaluation_metrics]) # 3. 创建训练历史DataFrame history_data = { '轮次': list(range(1, len(self.train_history['train_data_loss']) + 1)), '训练数据损失': self.train_history['train_data_loss'], '物理损失': self.train_history['physics_loss'], '验证数据损失': self.train_history['valid_data_loss'] } # 添加训练集指标 for metric in ['MSE', 'RMSE', 'MAE', 'MAPE', 'R2']: history_data[f'训练集_{metric}'] = [item[metric] for item in self.train_history['train_metrics']] # 添加验证集指标 for metric in ['MSE', 'RMSE', 'MAE', 'MAPE', 'R2']: history_data[f'验证集_{metric}'] = [item[metric] for item in self.train_history['valid_metrics']] history_df = pd.DataFrame(history_data) # 保存到Excel with pd.ExcelWriter(save_path) as writer: result_df.to_excel(writer, sheet_name='预测结果', index=False) metrics_df.to_excel(writer, sheet_name='评估指标', index=False) history_df.to_excel(writer, sheet_name='训练历史', index=False) # 保存图表 chart_path = os.path.splitext(save_path)[0] + "_chart.png" self.fig.savefig(chart_path, dpi=300) # 保存损失曲线图 loss_path = os.path.splitext(save_path)[0] + "_loss.png" self.loss_fig.savefig(loss_path, dpi=300) self.status_var.set(f"结果已保存至: {os.path.basename(save_path)}") messagebox.showinfo("保存成功", f"预测结果和图表已保存至:\n" f"主文件: {save_path}\n" f"预测图表: {chart_path}\n" f"损失曲线: {loss_path}") except Exception as e: messagebox.showerror("保存错误", f"保存结果失败:\n{str(e)}") def reset(self): """重置程序状态""" self.train_df = None self.test_df = None self.model = None self.train_file_var.set("") self.test_file_var.set("") # 清除训练历史 if hasattr(self, 'train_history'): del self.train_history # 清除图表 if hasattr(self, 'ax'): self.ax.clear() if hasattr(self, 'loss_ax'): self.loss_ax.clear() # 重绘画布 if hasattr(self, 'canvas'): self.canvas.draw() if hasattr(self, 'loss_canvas'): self.loss_canvas.draw() # 清除状态 self.status_var.set("已重置,请选择新数据") # 清除预测结果 if hasattr(self, 'predictions'): del self.predictions # 清除指标文本 if hasattr(self, 'metrics_var'): self.metrics_var.set("") messagebox.showinfo("重置", "程序已重置,可以开始新的分析") if __name__ == "__main__": root = tk.Tk() app = DamSeepageModel(root) root.mainloop() 检查并改正只需要给出对应地方
07-28
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值