TZOJ 1705 Dining(拆点最大流)

博客围绕奶牛饮食分配问题展开,农夫约翰为奶牛准备了多种食物和饮料,但奶牛有饮食偏好。需为每头奶牛分配食物和饮料,使满足两者意愿的奶牛数量最多,且每份食物和饮料只能被一头奶牛享用,还给出了输入输出格式及样例。

描述

Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

输入

Line 1: Three space-separated integers: N, F, and D
Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

输出

Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

样例输入

4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3

样例输出

3

提示

One way to satisfy three cows is:
Cow 1: no meal
Cow 2: Food #2, Drink #2
Cow 3: Food #1, Drink #1
Cow 4: Food #3, Drink #3
The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.
题意
N头牛,每头牛有F个喜欢的食物,D个喜欢的饮料,每种食物每瓶饮料只能供一头牛,问最多几头牛能感到满足(即又有喜欢的食物也有喜欢的饮料)
题解
首先食物连源点S流量1,饮料连汇点T流量1,食物连喜欢的牛流量1,饮料也连喜欢的牛流量1
这时候有个问题就是牛只能流出最多1的流量和饮料匹配,所以我们可以把牛拆成左牛和右牛,这样保证从牛最多流出1的流量
那么食物连左牛流量1,左牛连右牛流量1,右牛连饮料流量1
建完图,跑最大流算法即可
代码
 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 
 4 const int N=1e5+5;
 5 const int M=2e5+5;
 6 int n,m,S,T;
 7 int deep[N],q[400000];
 8 int FIR[N],TO[M],CAP[M],COST[M],NEXT[M],tote;
 9 
10 void add(int u,int v,int cap)
11 {
12     TO[tote]=v;
13     CAP[tote]=cap;
14     NEXT[tote]=FIR[u];
15     FIR[u]=tote++;
16 
17     TO[tote]=u;
18     CAP[tote]=0;
19     NEXT[tote]=FIR[v];
20     FIR[v]=tote++;
21 }
22 bool bfs()
23 {
24     memset(deep,0,sizeof deep);
25     deep[S]=1;q[1]=S;
26     int head=0,tail=1;
27     while(head!=tail)
28     {
29         int u=q[++head];
30         for(int v=FIR[u];v!=-1;v=NEXT[v])
31         {
32             if(CAP[v]&&!deep[TO[v]])
33             {
34                 deep[TO[v]]=deep[u]+1;
35                 q[++tail]=TO[v];
36             }
37         }
38     }
39     return deep[T];
40 }
41 int dfs(int u,int fl)
42 {
43     if(u==T)return fl;
44     int f=0;
45     for(int v=FIR[u];v!=-1&&fl;v=NEXT[v])
46     {
47         if(CAP[v]&&deep[TO[v]]==deep[u]+1)
48         {
49             int Min=dfs(TO[v],min(fl,CAP[v]));
50             CAP[v]-=Min;CAP[v^1]+=Min;
51             fl-=Min;f+=Min;
52         }
53     }
54     if(!f)deep[u]=-2;
55     return f;
56 }
57 int maxflow()
58 {
59     int ans=0;
60     while(bfs())
61         ans+=dfs(S,1<<30);
62     return ans;
63 }
64 void init()
65 {
66     tote=0;
67     memset(FIR,-1,sizeof FIR);
68 }
69 int main()
70 {
71     int v,cow,F,D,food,drink;
72     init();
73     cin>>cow>>F>>D;
74     S=F+2*cow+D+1,T=S+1;
75     for(int i=1;i<=F;i++)
76         add(S,i,1);
77     for(int i=F+2*cow+1;i<=F+2*cow+D;i++)
78         add(i,T,1);
79     for(int i=F+1;i<=F+cow;i++)
80     {
81         add(i,cow+i,1);
82         cin>>food>>drink;
83         while(food--)cin>>v,add(v,i,1);
84         while(drink--)cin>>v,add(cow+i,F+2*cow+v,1);
85     }
86     cout<<maxflow();
87     return 0;
88 }

转载于:https://www.cnblogs.com/taozi1115402474/p/9535513.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值