[国家集训队]JZPFAR

本文介绍了一种使用K-D Tree进行高效查询第k大距离的方法,通过优先队列和估价函数优化,实现对目标点距离的快速查找,适用于近似最近邻搜索等场景。

嘟嘟嘟

k-d tree模板之二:查询第k大距离。(所以是怎么上黑的)

因为k-d tree的查询就是暴力嘛,所以我就想到了一个很暴力的做法:每一次查询用一个长度为k的优先队列维护。按距离递增,编号递减的方式排序。
然后查询的时候,如果队列长度大于k了,就尝试用当前节点更新队首。
刚开始没看到k的范围只有20,以为也是1e5,所以觉得这方法不行,最后还是看了题解……
结果题解做法和我几乎一样,只不过有点优化:
1.先往队列里放入k个极小值,就能避免队空以及判断长度等问题。
2.查询的时候优先往估价函数大的子树查询,这样这个子树查完后可能就不会进入估价函数小的兄弟了。
3.对了,这里的估价函数是最长距离。
然后我自认为我的查询代码比题解简单:固定往左子树找,如果左子树估价函数小于右子树,就交换左右子树。这样是没有影响的,还避免了复杂的分类讨论。

k-d tree debug也特别简单,直接改成爆搜,就知道是建树错了还是查询错了。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<ctime>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("") 
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e5 + 5;
inline ll read()
{
    ll ans = 0;
    char ch = getchar(), last = ' ';
    while(!isdigit(ch)) last = ch, ch = getchar();
    while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
    if(last == '-') ans = -ans;
    return ans;
}
inline void write(ll x)
{
    if(x < 0) x = -x, putchar('-');
    if(x >= 10) write(x / 10);
    putchar(x % 10 + '0');
}

int n, m, Dim;
struct Tree
{
    int ch[2], id;
    ll d[2], Min[2], Max[2];
    In bool operator < (const Tree& oth)const
    {
        return d[Dim] < oth.d[Dim];
    }
}t[maxn << 2], a[maxn];
int root, tcnt = 0;
In void pushup(int now)
{
    for(int i = 0; i < 2; ++i)
    {
        if(t[now].ch[0])
        {
            t[now].Min[i] = min(t[now].Min[i], t[t[now].ch[0]].Min[i]);
            t[now].Max[i] = max(t[now].Max[i], t[t[now].ch[0]].Max[i]);
        }
        if(t[now].ch[1])
        {
            t[now].Min[i] = min(t[now].Min[i], t[t[now].ch[1]].Min[i]);
            t[now].Max[i] = max(t[now].Max[i], t[t[now].ch[1]].Max[i]);
        }
    }
}
In void build(int& now, int L, int R, int d)
{
    if(L > R) return;
    int mid = (L + R) >> 1;
    Dim = d;
    nth_element(a + L, a + mid, a + R + 1);
    t[now = ++tcnt] = a[mid];
    for(int i = 0; i < 2; ++i)
    {
        t[now].ch[i] = 0;
        t[now].Min[i] = t[now].Max[i] = t[now].d[i];
    }
    build(t[now].ch[0], L, mid - 1, d ^ 1);
    build(t[now].ch[1], mid + 1, R, d ^ 1);
    pushup(now);
}

struct Node
{
    ll dis; int id;
    In bool operator < (const Node& oth)const
    {
        return dis > oth.dis || (dis == oth.dis && id < oth.id);
    }
};
priority_queue<Node> q;
In ll dis(int now, ll* d)
{
    ll ret = 0;
    for(int i = 0; i < 2; ++i) ret += (t[now].d[i] - d[i]) * (t[now].d[i] - d[i]);
    return ret;
}
In ll price(int now, ll* d)
{
    ll ret = 0;
    for(int i = 0; i < 2; ++i)
    {
        ll Max = max(abs(t[now].Max[i] - d[i]), abs(t[now].Min[i] - d[i]));
        ret += Max * Max;
    }
    return ret;
}
In void query(int now, ll* d)
{
    if(!now) return;
    ll tp = dis(now, d);
    if(tp > q.top().dis || (tp == q.top().dis && t[now].id < q.top().id)) q.pop(), q.push((Node){tp, t[now].id});
    ll disL = price(t[now].ch[0], d), disR = price(t[now].ch[1], d);
    if(disL < disR) swap(t[now].ch[0], t[now].ch[1]), swap(disL, disR);
    if(disL > q.top().dis || (disL == q.top().dis && t[t[now].ch[0]].id < q.top().id)) query(t[now].ch[0], d);
    if(disR > q.top().dis || (disR == q.top().dis && t[t[now].ch[1]].id < q.top().id)) query(t[now].ch[1], d);
}

int main()
{
    n = read();
    for(int i = 1; i <= n; ++i) a[i].d[0] = read(), a[i].d[1] = read(), a[i].id = i;
    build(root, 1, n, 0);
    m = read();
    for(int i = 1; i <= m; ++i)
    {
        static ll d[2];
        d[0] = read(), d[1] = read(); int k = read();
        while(!q.empty()) q.pop();
        for(int j = 1; j <= k; ++j) q.push((Node){-1, 0});
        query(root, d); 
        write(q.top().id), enter;
    }
    return 0;
}

转载于:https://www.cnblogs.com/mrclr/p/10270612.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值