DCF:A Dataflow-Based Collaborative Filtering Trainging Algorithm

探讨了协同过滤技术中交替最小二乘法(Alternating Least Squares, ALS)与梯度下降法(Gradient Descent, GD)的局限性。ALS面临高计算复杂度的问题,而GD则存在同步难题和大量数据移动的困扰。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstratct:描述了当前协同过滤算法两大技术alternating least square(ALS,最小二乘法)和gradient descent(GD)的确定:原文:Existing collaborative filtering techniques are implemented with either alternating least square algorithm or gradient descent (GD) algorithm. However,both of the two algorithms are not scalable because ALS suffers from high computation complexity and GD suffers from severe synchronization problem and tremendous data movement.

 

转载于:https://www.cnblogs.com/hotMemo/p/9854308.html

item-based collaborative filtering recommendation algorithm combining item c是一种基于物品的协同过滤推荐算法,在推荐系统中被广泛应用。该算法的核心思想是通过分析用户对不同物品的行为数据,找出与物品c具有相似特征或相关性较高的其他物品,并将这些物品推荐给用户。 具体来说,item-based collaborative filtering算法首先会构建一个物品相似度矩阵。该矩阵的每个元素表示不同物品之间的相似度程度。物品之间的相似度可以通过计算它们在用户行为上的重合度、关联度或其他相似性指标得出。 在物品相似度矩阵构建完成后,当用户需要进行推荐时,算法会根据用户已有的历史行为数据找出与用户已喜欢或购买的物品c相似的其他物品。对于相似物品集合中的每个物品,算法会根据用户对该物品的评分或其他行为数据,对推荐物品进行排序。最后,算法会返回排名靠前的若干个推荐物品给用户。 通过将物品c与其他物品进行比较,并利用物品相似度矩阵进行排序,item-based collaborative filtering算法可以更加准确地将与用户兴趣相关的物品推荐给用户。同时,它也能够克服用户行为数据稀疏性的缺点,提高推荐的个性化程度。 总的来说,item-based collaborative filtering recommendation algorithm combining item c是一种有效的推荐算法,可以根据用户已有的历史行为数据找出与物品c相似的其他物品,并将这些物品按照用户的兴趣进行推荐。这种算法在实际应用中有着广泛的应用和良好的推荐效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值