基础dp的题目;
最长公共子序列,,,LCS(Longest Common Subsequence)
dp[i][j]表示分别以i和j结尾的的最长公共子序列的长度;
如果s1[i]==s2[j] dp[i][j]就等于dp[i-1][j-1]的值加上一;
如果是s1[i]!=s2[j] dp[i][j]应该等于dp[i-1][j]和dp[i][j-1]的最大值
# include <cstdio>
# include <iostream>
# include <cstring>
# include <algorithm>
using namespace std;
const int maxn=1e3+5;
char a[maxn],b[maxn];
int dp[maxn][maxn];
int main(){
while(scanf("%s %s",a,b)!=EOF){
int la=strlen(a),lb=strlen(b);
memset(dp,0,sizeof(dp));
for(int i=0;i<la;i++){
for(int j=0;j<lb;j++){
if(a[i]==b[j]) dp[i+1][j+1]=dp[i][j]+1;
else {
dp[i+1][j+1]=max(dp[i+1][j],dp[i][j+1]);
}
}
}
int ans=dp[la][lb];
printf("%d\n",ans);
}
return 0;
}