POJ 3074 Sudoku DLX精确覆盖

本文介绍了一种使用DLX算法解决Sudoku难题的方法。DLX算法是一种回溯算法,特别适用于解决精确覆盖问题。文章详细展示了如何将Sudoku问题转化为精确覆盖问题,并通过DLX算法求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


DLX精确覆盖.....模版题


Sudoku
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 8336 Accepted: 2945

Description

In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller 3 × 3 subgrids. For example,

.2738..1.
.1...6735
.......29
3.5692.8.
.........
.6.1745.3
64.......
9518...7.
.8..6534.

Given some of the numbers in the grid, your goal is to determine the remaining numbers such that the numbers 1 through 9 appear exactly once in (1) each of nine 3 × 3 subgrids, (2) each of the nine rows, and (3) each of the nine columns.

Input

The input test file will contain multiple cases. Each test case consists of a single line containing 81 characters, which represent the 81 squares of the Sudoku grid, given one row at a time. Each character is either a digit (from 1 to 9) or a period (used to indicate an unfilled square). You may assume that each puzzle in the input will have exactly one solution. The end-of-file is denoted by a single line containing the word “end”.

Output

For each test case, print a line representing the completed Sudoku puzzle.

Sample Input

.2738..1..1...6735.......293.5692.8...........6.1745.364.......9518...7..8..6534.
......52..8.4......3...9...5.1...6..2..7........3.....6...1..........7.4.......3.
end

Sample Output

527389416819426735436751829375692184194538267268174593643217958951843672782965341
416837529982465371735129468571298643293746185864351297647913852359682714128574936

Source

[Submit]   [Go Back]   [Status]   [Discuss]




#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N=9;
const int maxn=N*N*N+10;
const int maxm=N*N*4+10;
const int maxnode=maxn*4+maxm+10;

char sudoku[maxn];

struct DLX
{
	int n,m,size;
	int U[maxnode],D[maxnode],L[maxnode],R[maxnode],Row[maxnode],Col[maxnode];
	int H[maxnode],S[maxnode];
	int ansd,ans[maxn];
	void init(int _n,int _m)
	{
		n=_n; m=_m;
		for(int i=0;i<=m;i++)
		{
			S[i]=0;
			U[i]=D[i]=i;
			L[i]=i-1;
			R[i]=i+1;
		}
		R[m]=0; L[0]=m;
		size=m;
		for(int i=1;i<=n;i++) H[i]=-1;
	}
	void Link(int r,int c)
	{
		++S[Col[++size]=c];
		Row[size]=r;
		D[size]=D[c];
		U[D[c]]=size;
		U[size]=c;
		D[c]=size;
		if(H[r]<0) H[r]=L[size]=R[size]=size;
		else
		{
			R[size]=R[H[r]];
			L[R[H[r]]]=size;
			L[size]=H[r];
			R[H[r]]=size;
		}
	}
	void remove(int c)
	{
		L[R[c]]=L[c]; R[L[c]]=R[c];
		for(int i=D[c];i!=c;i=D[i])
			for(int j=R[i];j!=i;j=R[j])
			{
				U[D[j]]=U[j];
				D[U[j]]=D[j];
				--S[Col[j]];
			}
	}
	void resume(int c)
	{
		for(int i=U[c];i!=c;i=U[i])
			for(int j=L[i];j!=i;j=L[j])
				++S[Col[U[D[j]]=D[U[j]]=j]];
		L[R[c]]=R[L[c]]=c;
	}
	bool Dance(int d)
	{
		if(R[0]==0)
		{
			for(int i=0;i<d;i++) sudoku[(ans[i]-1)/9]=(ans[i]-1)%9+'1';
			printf("%s\n",sudoku);
			return true;
		}
		int c=R[0];
		for(int i=R[0];i!=0;i=R[i])
			if(S[i]<S[c]) c=i;
		remove(c);
		for(int i=D[c];i!=c;i=D[i])
		{
			ans[d]=Row[i];
			for(int j=R[i];j!=i;j=R[j]) remove(Col[j]);
			if(Dance(d+1)) return true;
			for(int j=L[i];j!=i;j=L[j]) resume(Col[j]);
		}
		resume(c);
		return false;
	}
};

DLX dlx;

void place(int& r,int& c1,int& c2,int& c3,int& c4,int i,int j,int k)
{
	r=(i*N+j)*N+k;
	c1=i*N+j+1;
	c2=N*N+N*i+k;
	c3=N*N*2+N*j+k;
	c4=N*N*3+((i/3)*3+(j/3))*N+k;
}

int main()
{
	while(scanf("%s",sudoku)!=EOF)
	{
		if(sudoku[2]=='d') break;
		dlx.init(N*N*N,N*N*4);
		for(int i=0;i<N;i++)
		{
			for(int j=0;j<N;j++)
			{
				for(int k=1;k<=N;k++)
				{
					if(sudoku[i*N+j]=='.'||sudoku[i*N+j]==k+'0')
					{
						int r,c1,c2,c3,c4;
						place(r,c1,c2,c3,c4,i,j,k);
						dlx.Link(r,c1);
						dlx.Link(r,c2);
						dlx.Link(r,c3);
						dlx.Link(r,c4);
					}
				}
			}
		}
		dlx.Dance(0);
	}
	return 0;
}


转载于:https://www.cnblogs.com/claireyuancy/p/6917322.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值