SVM理论之最优超平面

本文介绍了SVM(支持向量机)中的最优超平面概念,指出最优分类面旨在最大化几何间隔,使得离分类面最近的点(支持向量)距离最大化。通过拉格朗日对偶性转换,SVM问题转化为求解对偶问题,最终找到分类的最优解。支持向量决定了分类决策函数,而计算新样本分类时仅需与支持向量进行运算,降低了计算复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最优超平面(分类面)

 

 

  如图所示, 方形点和圆形点代表两类样本, H 为分类线,H1, H2分别为过各类中离分类线最近的样本且平行于分类线的直线, H1、H2上的点(xi, yi)称为支持向量, 它们之间的距离叫做分类间隔(margin)。中间那条分界线并不是唯一的,我们可以把它稍微旋转一下,只要不分错。所谓最优分类面(Optimal Hyper Plane)就是要求分类面不但能将两类正确分开(训练错误率为0),而且使分类间隔最大。推广到高维空间,最优分类线就变为最优分类面。支持向量是那些最靠近决策面的数据点,这样的数据点是最难分类的,因此,它们和决策面的最优位置直接相关。

  我们有两个 margin 可以选,不过 functional margin 明显是不太适合用来最大化的一个量,因为在 hyper plane 固定以后,我们可以等比例地缩放 w 的长度和 b 的值,这样可以使得 f(x)=wTx+b 的值任意大,亦即 functional margin γf可以在 hyper plane 保持不变的情况下被取得任意大,而 geometrical margin γg则没有这个问题,因为除上了 ∥w∥ 这个分母,所以缩放 w 和b 的时候γg的值是不会改变的,它只随着 hyper plane 的变动而变动,因此,这是更加合适的一个 margin 。对一个数据点进行分类,当它的 margin 越大的时候,分类的 置信度(confidence) 越大。对于一个包含 n 个点的数据集,我们可以很自然地定义它的 margin 为所有这 n 个点的 margin 值中最小的那个γg=minγg,i,于是,为了使得分类的 confidence 高,我们希望所选择的 hyper plane 能够最大化这个 margin 值。简要地说,就是找到这样一个最优分类面,使离最优分类面最近的点的几何距离最大。即最优分类面的目标函数为:

   max γ,  s.t.  yi(wT ·xi+b) = γg,i  >=  γg,i=1,…,n                                       &n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值