线段树(SegmentTree)基础模板

本文深入探讨了线段树的基本概念、构建、查询和修改操作,通过实例详细讲解了线段树在解决区间查询和更新问题中的应用。从线段树的定义到具体实现,再到各种变种如线段树查询II、统计比给定整数小的数的个数等,本文提供了丰富的代码示例和解析。

线段树模板题来源:https://www.lintcode.com/problem/segment-tree-build/description

201. 线段树的构造

/**
 * Definition of SegmentTreeNode:
 * class SegmentTreeNode {
 * public:
 *     int start, end;
 *     SegmentTreeNode *left, *right;
 *     SegmentTreeNode(int start, int end) {
 *         this->start = start, this->end = end;
 *         this->left = this->right = NULL;
 *     }
 * }
 */


class Solution {
public:
    /*
     * @param start: start value.
     * @param end: end value.
     * @return: The root of Segment Tree.
     */
    SegmentTreeNode * build(int start, int end) {
        // write your code here
        if(start > end) return nullptr;
        auto root = new SegmentTreeNode(start, end);
        if(start < end){
            auto mid = (start + end) / 2;
            root->left = build(start, mid);
            root->right = build(mid+1, end);
        }
        
        return root;
    }
};

202. 线段树的查询

/**
 * Definition of SegmentTreeNode:
 * class SegmentTreeNode {
 * public:
 *     int start, end, max;
 *     SegmentTreeNode *left, *right;
 *     SegmentTreeNode(int start, int end, int max) {
 *         this->start = start;
 *         this->end = end;
 *         this->max = max;
 *         this->left = this->right = NULL;
 *     }
 * }
 */

class Solution {
public:
    /**
     * @param root: The root of segment tree.
     * @param start: start value.
     * @param end: end value.
     * @return: The maximum number in the interval [start, end]
     */
    int query(SegmentTreeNode * root, int start, int end) {
        // write your code here
        auto mid = root->start + (root->end - root->start) / 2;
        if(start <= root->start && root->end <= end) return root->max;
        else if(start > mid) return query(root->right, start, end);
        else if(end <= mid) return query(root->left, start, end);
        else return max(query(root->left, start, mid), query(root->right, mid+1, end));
    }
};

203. 线段树的修改

/**
 * Definition of SegmentTreeNode:
 * class SegmentTreeNode {
 * public:
 *     int start, end, max;
 *     SegmentTreeNode *left, *right;
 *     SegmentTreeNode(int start, int end, int max) {
 *         this->start = start;
 *         this->end = end;
 *         this->max = max;
 *         this->left = this->right = NULL;
 *     }
 * }
 */

class Solution {
public:
    /**
     * @param root: The root of segment tree.
     * @param index: index.
     * @param value: value
     * @return: nothing
     */
    void modify(SegmentTreeNode * root, int index, int value) {
        // write your code here
        if(root == nullptr || index > root->end || index < root->start) return;
        if(root->start == root->end) {
            root->max = value;
            return ;
        }
        auto mid = root->start + (root->end - root->start) / 2;

        if(index > mid){
            modify(root->right, index, value);
        } else {
            modify(root->left, index, value);
        }
        root->max = max(root->right->max, root->left->max);
        
    }
};

247. 线段树查询 II

/**
 * Definition of SegmentTreeNode:
 * class SegmentTreeNode {
 * public:
 *     int start, end, count;
 *     SegmentTreeNode *left, *right;
 *     SegmentTreeNode(int start, int end, int count) {
 *         this->start = start;
 *         this->end = end;
 *         this->count = count;
 *         this->left = this->right = NULL;
 *     }
 * }
 */


class Solution {
public:
    /*
     * @param root: The root of segment tree.
     * @param start: start value.
     * @param end: end value.
     * @return: The count number in the interval [start, end]
     */
    int query(SegmentTreeNode * root, int start, int end) {
        // write your code here
        if(root == NULL) return 0;
        if(start <= root->start && root->end <= end) return root->count;
        auto mid = root->start + (root->end - root->start) / 2;
        if(end <= mid) return query(root->left, start, end);
        else if(start > mid) return query(root->right, start, end);
        else return query(root->left, start, mid) + query(root->right, mid + 1, end); 
    }
};

248. 统计比给定整数小的数的个数

class Solution {
public:
    /**
     * @param A: An integer array
     * @param queries: The query list
     * @return: The number of element in the array that are smaller that the given integer
     */
    struct SegmentTreeNode {
        int start, end, count;
        SegmentTreeNode* left, *right;
        SegmentTreeNode(int start_, int end_) : 
        start(start_), end(end_), count(0), left(nullptr), right(nullptr){}  
    };
    
    SegmentTreeNode* build(int start, int end){
        if(start > end) return nullptr;
        auto root = new SegmentTreeNode(start, end);
        if(start != end){
            auto mid = (start + end) / 2;
            root->left = build(start, mid);
            root->right = build(mid+1, end);
        }
        
        return root;
    }
    
    void add(SegmentTreeNode* root, int index, int val){
        auto mid = (root->start + root->end) / 2;
        if(root->start == root->end) {
            root->count += val;
            return;
        }
        
        if(index > mid){
            add(root->right, index, val);
        } else {
            add(root->left, index, val);
        }
        
        root->count += val;
        
    }
    
    int query(SegmentTreeNode* root, int start, int end){
        if(start <= root->start && root->end <= end) return root->count;
        auto mid = (root->start + root->end) / 2;
        if(start > mid) return query(root->right, start, end);
        else if(end <= mid) return query(root->left, start, end);
        else return query(root->right, mid+1, end) + query(root->left, start, mid);
    }
    vector<int> countOfSmallerNumber(vector<int> &A, vector<int> &queries) {
        // write your code here
        auto root = build(0, 10000);
        for(int i = 0; i < A.size(); i++){
            add(root, A[i], 1);
        }
        
        vector<int> ret;
        for(int i = 0;  i < queries.size(); i++){
            ret.push_back(query(root, 0, queries[i]-1));
        }
        
        return ret;
    }
};

249. 统计前面比自己小的数的个数

class Solution {
public:
    /**
     * @param A: an integer array
     * @return: A list of integers includes the index of the first number and the index of the last number
     */
     struct SegmentTreeNode {
        int start, end, count;
        SegmentTreeNode* left, *right;
        SegmentTreeNode(int start_, int end_) : 
        start(start_), end(end_), count(0), left(nullptr), right(nullptr){}  
    };
    
    SegmentTreeNode* build(int start, int end){
        if(start > end) return nullptr;
        auto root = new SegmentTreeNode(start, end);
        if(start != end){
            auto mid = (start + end) / 2;
            root->left = build(start, mid);
            root->right = build(mid+1, end);
        }
        
        return root;
    }
    
    void add(SegmentTreeNode* root, int index, int val){
        auto mid = (root->start + root->end) / 2;
        if(root->start == root->end) {
            root->count += val;
            return;
        }
        
        if(index > mid){
            add(root->right, index, val);
        } else {
            add(root->left, index, val);
        }
        
        root->count += val;
        
    }
    
    int query(SegmentTreeNode* root, int start, int end){
        if(start > end) return 0;
        if(start <= root->start && root->end <= end) return root->count;
        auto mid = (root->start + root->end) / 2;
        if(start > mid) return query(root->right, start, end);
        else if(end <= mid) return query(root->left, start, end);
        else return query(root->right, mid+1, end) + query(root->left, start, mid);
    }
    vector<int> countOfSmallerNumberII(vector<int> &A) {
        // write your code here
        auto root = build(0, 10000);
        vector<int> ret;
        for(int i = 0; i < A.size(); i++){
            auto c = query(root, 0, A[i]-1);
           
            ret.push_back(c);
          
            add(root, A[i], 1);
        }

        return ret;
    }
};

转载于:https://www.cnblogs.com/qbits/p/11273469.html

乐播投屏是一款简单好用、功能强大的专业投屏软件,支持手机投屏电视、手机投电脑、电脑投电视等多种投屏方式。 多端兼容与跨网投屏:支持手机、平板、电脑等多种设备之间的自由组合投屏,且无需连接 WiFi,通过跨屏技术打破网络限制,扫一扫即可投屏。 广泛的应用支持:支持 10000+APP 投屏,包括综合视频、网盘与浏览器、美韩剧、斗鱼、虎牙等直播平台,还能将央视、湖南卫视等各大卫视的直播内容一键投屏。 高清流畅投屏体验:腾讯独家智能音画调校技术,支持 4K 高清画质、240Hz 超高帧率,低延迟不卡顿,能为用户提供更高清、流畅的视觉享受。 会议办公功能强大:拥有全球唯一的 “超级投屏空间”,扫码即投,无需安装。支持多人共享投屏、远程协作批注,PPT、Excel、视频等文件都能流畅展示,还具备企业级安全加密,保障会议资料不泄露。 多人互动功能:支持多人投屏,邀请好友加入投屏互动,远程也可加入。同时具备一屏多显、语音互动功能,支持多人连麦,实时语音交流。 文件支持全面:支持 PPT、PDF、Word、Excel 等办公文件,以及视频、图片等多种类型文件的投屏,还支持网盘直投,无需下载和转格式。 特色功能丰富:投屏时可同步录制投屏画面,部分版本还支持通过触控屏或电视端外接鼠标反控电脑,以及在投屏过程中用画笔实时标注等功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值