【POJ 2186】Popular Cows

博客围绕牛受欢迎问题展开,题目是有N头牛,给出M对整数(A,B)表示牛A认为牛B受欢迎。题解先用tarjan求出每个强连通分量,再缩点,统计每个点出度,若有且只有1个出度为0的点,输出该点包含节点数,否则输出0。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Popular Cows
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 42555 Accepted: 17301

Description

Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is 
popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow. 

Input

* Line 1: Two space-separated integers, N and M 

* Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular. 

Output

* Line 1: A single integer that is the number of cows who are considered popular by every other cow. 

Sample Input

3 3
1 2
2 1
2 3

Sample Output

1

Hint

Cow 3 is the only cow of high popularity. 

Source

USACO 2003 Fall

题目大意:每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这

种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头
牛被所有的牛认为是受欢迎的。
 
 

题解:还是觉得有点难啊……别人的题解……拿来借鉴看看(真的不是很会写,哎,只会模板)

 先用tarjan求出每个强连通分量,再缩点,统计每个点的出度,如果有且只有1个出度为0的点,就输出这个点包含的节点数,否则输出0.

#include<iostream>
#include<cstdio>
#include<vector>
#include<string.h>
#include<cmath>
using namespace std;
vector<int>g[10010];
int n,m,x,y,i,j,v,c[10010],l=0,low[10010],dfn[10010],f[10010],cnt=0,out0[10010],sum[10010],time_clock=0;
void tarjan(int u){
    low[u]=dfn[u]=++time_clock;
    c[++l]=u;
    for(int i=0;i<g[u].size();++i){
        v=g[u][i];
        if(!dfn[v]){
            tarjan(v);
            low[u]=min(low[u],low[v]);
        }else if(!f[v])low[u]=min(low[u],dfn[v]);
    }
    if(low[u]==dfn[u]){
        int len=l;
        cnt++;
        while(c[l]!=u)f[c[l--]]=cnt;
        f[c[l--]]=cnt;
        sum[cnt]=len-l;
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    for(i=1;i<=m;++i){
        scanf("%d%d",&x,&y);
        g[x].push_back(y);
    }
    memset(dfn,0,sizeof(dfn));
    for(i=1;i<=n;++i)if(!dfn[i])tarjan(i);
    for(i=1;i<=n;++i)
    for(j=0;j<g[i].size();++j){
        v=g[i][j];
        if(f[i]!=f[v])out0[f[i]]++;
    }
    x=0;
    for(i=1;i<=cnt;++i)
    if(!out0[i]){
        if(x>0){
            printf("0");
            return 0;
        }
        x=sum[i];
    }
    printf("%d",x);
    return 0;
}

 

转载于:https://www.cnblogs.com/wuhu-JJJ/p/11154906.html

内容概要:本文针对国内加密货币市场预测研究较少的现状,采用BP神经网络构建了CCi30指数预测模型。研究选取2018年3月1日至2019年3月26日共391天的数据作为样本,通过“试凑法”确定最优隐结点数目,建立三层BP神经网络模型对CCi30指数收盘价进行预测。论文详细介绍了数据预处理、模型构建、训练及评估过程,包括数据归一化、特征工程、模型架构设计(如输入层、隐藏层、输出层)、模型编译与训练、模型评估(如RMSE、MAE计算)以及结果可视化。研究表明,该模型在短期内能较准确地预测指数变化趋势。此外,文章还讨论了隐层节点数的优化方法及其对预测性能的影响,并提出了若干改进建议,如引入更多技术指标、优化模型架构、尝试其他时序模型等。 适合人群:对加密货币市场预测感兴趣的研究人员、投资者及具备一定编程基础的数据分析师。 使用场景及目标:①为加密货币市场投资者提供一种新的预测工具和方法;②帮助研究人员理解BP神经网络在时间序列预测中的应用;③为后续研究提供改进方向,如数据增强、模型优化、特征工程等。 其他说明:尽管该模型在短期内表现出良好的预测性能,但仍存在一定局限性,如样本量较小、未考虑外部因素影响等。因此,在实际应用中需谨慎对待模型预测结果,并结合其他分析工具共同决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值