POJ 2528 Mayor's posters

本文针对市长海报问题,提出了一种有效的解决策略。该问题描述了一个关于海报放置的场景,在一个固定长度的墙上,不同的候选人根据一定的规则放置竞选海报。文章详细介绍了如何通过离散化坐标和线段树的数据结构来解决这个问题,包括输入输出样例和完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mayor's posters
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 26695 Accepted: 7711

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers l i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l i, l i+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

Source

//这种离散化我还是第一次遇见,就是把所有的坐标排列,然后就把排列后的相邻两个坐标当成一段线段

//然后进行排序、把名次下标当作线段树的范围

//这样做多久2W组了,标记的话比较简单、判重的话果断hash,呵呵

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define lson l,m,k<<1
#define rson m+1,r,k<<1|1
#define N 10001
using namespace std;
int n;
int re[N][2];
int rc[N<<1];
int st[N<<2];
bool hash[N<<1];
int flag;
int bf(int &x)
{
   int l=0,r=n,m;
   while(l<=r)
   {
       m=(l+r)>>1;
       if(rc[m]>x) r=m-1;
       else if(rc[m]<x) l=m+1;
            else  return m;
   }
}
void down(int &k)
{
    st[k<<1]=st[k<<1|1]=st[k];
    st[k]=-1;
}
void build(int l,int r,int k)
{
    st[k]=-1;
    if(l==r)
      return;
    int m=(l+r)>>1;
    build(lson);
    build(rson);
}
void updata(int &L,int &R,int l,int r,int k)
{
    if(L<=l&&R>=r)
    {
        st[k]=flag;
        return ;
    }
    if(st[k]!=-1)
       down(k);
    int m=(l+r)>>1;
    if(L<=m) updata(L,R,lson);
    if(R>m)  updata(L,R,rson);
}
void query(int l,int r,int k)
{
    if(st[k]!=-1)
    {
        hash[st[k]]=1;
        return ;
    }
    int m=(l+r)>>1;
    query(lson);
    query(rson);
}
int main()
{
    int c;
    scanf("%d",&c);
    while(c--)
    {
        int m,j,i;
        scanf("%d",&m);
        for(j=0,i=0;i<m;i++)
         {
             scanf("%d%d",&re[i][0],&re[i][1]);
             rc[j++]=re[i][0];rc[j++]=re[i][1];
         }
         sort(rc,rc+j);
         for(i=1,n=0;i<j;i++)
          if(rc[i]!=rc[i-1])
            rc[++n]=rc[i];
        build(0,n,1);
        int left,right;
         for(i=0;i<m;i++)
         {
             left=bf(re[i][0]);
             right=bf(re[i][1]);
             flag=i;
             updata(left,right,0,n,1);
         }
         for(i=0;i<=n;i++)
           hash[i]=0;
        query(0,n,1);
        for(j=i=0;i<=n;i++)
          if(hash[i])
           j++;
        printf("%d\n",j);
    }
    return 0;
}

转载于:https://www.cnblogs.com/372465774y/archive/2012/07/18/2597713.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值