POJ Minimum Cut

本文介绍了一个求解无向图中最小割大小的问题,通过使用Stoer-Wagner算法实现。该算法通过逐步合并顶点来寻找使图断开所需的最少边数。
Minimum Cut
Time Limit: 10000MS Memory Limit: 65536K
Total Submissions: 9302 Accepted: 3902
Case Time Limit: 5000MS

Description

Given an undirected graph, in which two vertices can be connected by multiple edges, what is the size of the minimum cut of the graph? i.e. how many edges must be removed at least to disconnect the graph into two subgraphs?

Input

Input contains multiple test cases. Each test case starts with two integers N and M (2 ≤ N ≤ 500, 0 ≤ M ≤ N × (N − 1) ⁄ 2) in one line, where N is the number of vertices. Following are M lines, each line contains Mintegers AB and C (0 ≤ AB < NA ≠ BC > 0), meaning that there C edges connecting vertices A and B.

Output

There is only one line for each test case, which contains the size of the minimum cut of the graph. If the graph is disconnected, print 0.

Sample Input

3 3
0 1 1
1 2 1
2 0 1
4 3
0 1 1
1 2 1
2 3 1
8 14
0 1 1
0 2 1
0 3 1
1 2 1
1 3 1
2 3 1
4 5 1
4 6 1
4 7 1
5 6 1
5 7 1
6 7 1
4 0 1
7 3 1

Sample Output

2
1
2

Source

Baidu Star 2006 Semifinal 
Wang, Ying (Originator) 
Chen, Shixi (Test cases)

[Submit]   [Go Back]   [Status]   [Discuss]

 

无向图的边连通度,有一个神奇的算法,还有我蒟蒻的模板。

 

 1 #include <cstdio>
 2 #include <cstring>
 3 
 4 inline int min(int a, int b)
 5 {
 6     return a < b ? a : b;
 7 }
 8 
 9 const int inf = 2e9;
10 const int maxn = 505;
11 
12 int n, m;
13 int vis[maxn];
14 int wet[maxn];
15 int com[maxn];
16 int G[maxn][maxn];
17 
18 inline int search(int &S, int &T)
19 {
20     memset(vis, 0, sizeof(vis));
21     memset(wet, 0, sizeof(wet));
22     
23     S = -1, T = -1;
24     
25     int id, maxi, ret = 0;
26     
27     for (int i = 0; i < n; ++i)
28     {
29         maxi = -inf;
30         
31         for (int j = 0; j < n; ++j)
32             if (!com[j] && !vis[j] && wet[j] > maxi)
33                 id = j, maxi = wet[j];
34                 
35         if (id == T)
36             return ret;
37 
38         S = T;
39         T = id;
40         ret = maxi;
41         vis[id] = 1;
42         
43         for (int j = 0; j < n; ++j)
44             if (!com[j] && !vis[j])
45                 wet[j] += G[id][j];
46     }
47 }
48 
49 inline int StoerWagner(void)
50 {
51     int ret = inf, S, T;
52     
53     memset(com, 0, sizeof(com));
54     
55     for (int i = 0; i < n - 1; ++i)
56     {
57         ret = min(ret, search(S, T));
58         
59         if (!ret)return 0;
60         
61         com[T] = 1;
62         
63         for (int j = 0; j < n; ++j)
64             if (!com[j])
65                 G[S][j] += G[T][j],
66                 G[j][S] += G[j][T];
67     }
68     
69     return ret;
70 }
71 
72 signed main(void)
73 {
74     while (~scanf("%d%d", &n, &m))
75     {
76         memset(G, 0, sizeof(G));
77         
78         for (int i = 1; i <= m; ++i)
79         {
80             int x, y, w;
81             scanf("%d%d%d", &x, &y, &w);
82             G[x][y] += w;
83             G[y][x] += w;
84         }
85         
86         printf("%d\n", StoerWagner());
87     }
88 }

 

@Author: YouSiki

转载于:https://www.cnblogs.com/yousiki/p/6230556.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值