POJ 1155 TELE

本文解析了一道关于树形动态规划的经典竞赛题,通过构建树状结构来模拟信号传输网络,利用动态规划求解最优方案,使得电视台在不亏损的情况下能够最大化观众数量。

TELE

Time Limit: 1000ms
Memory Limit: 65536KB
This problem will be judged on  PKU. Original ID: 1155
64-bit integer IO format: %lld      Java class name: Main
A TV-network plans to broadcast an important football match. Their network of transmitters and users can be represented as a tree. The root of the tree is a transmitter that emits the football match, the leaves of the tree are the potential users and other vertices in the tree are relays (transmitters). 
The price of transmission of a signal from one transmitter to another or to the user is given. A price of the entire broadcast is the sum of prices of all individual signal transmissions. 
Every user is ready to pay a certain amount of money to watch the match and the TV-network then decides whether or not to provide the user with the signal. 
Write a program that will find the maximal number of users able to watch the match so that the TV-network's doesn't lose money from broadcasting the match.
 

Input

The first line of the input file contains two integers N and M, 2 <= N <= 3000, 1 <= M <= N-1, the number of vertices in the tree and the number of potential users. 
The root of the tree is marked with the number 1, while other transmitters are numbered 2 to N-M and potential users are numbered N-M+1 to N. 
The following N-M lines contain data about the transmitters in the following form: 
K A1 C1 A2 C2 ... AK CK 
Means that a transmitter transmits the signal to K transmitters or users, every one of them described by the pair of numbers A and C, the transmitter or user's number and the cost of transmitting the signal to them. 
The last line contains the data about users, containing M integers representing respectively the price every one of them is willing to pay to watch the match.
 

Output

The first and the only line of the output file should contain the maximal number of users described in the above text.
 

Sample Input

9 6
3 2 2 3 2 9 3
2 4 2 5 2
3 6 2 7 2 8 2
4 3 3 3 1 1

Sample Output

5

Source

 
解题:树形dp,dp[u][j]表示以u为根的子树给j个顾客服务
 
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 using namespace std;
 5 const int maxn = 3005;
 6 const int INF = 0x3f3f3f3f;
 7 int dp[maxn][maxn],cnt[maxn],val[maxn],n,m;
 8 struct arc{
 9     int to,w,next;
10     arc(int x = 0,int y = 0,int z = -1){
11         to = x;
12         w = y;
13         next = z;
14     }
15 }e[maxn<<1];
16 int head[maxn],tot;
17 void add(int u,int v,int w){
18     e[tot] = arc(v,w,head[u]);
19     head[u] = tot++;
20 }
21 void dfs(int u){
22     cnt[u] = 1;
23     for(int i = 1; i <= m; ++i)
24         dp[u][i] = -INF;
25     dp[u][0] = 0;
26     if(head[u] == -1){
27         dp[u][1] = val[u];
28         return;
29     }
30     for(int i = head[u]; ~i; i = e[i].next){
31         dfs(e[i].to);
32         cnt[u] += cnt[e[i].to];
33         for(int j = cnt[u]; j >= 1; --j){
34             for(int k = 0; k < j; ++k)
35                 dp[u][j] = max(dp[u][j],dp[u][k]+dp[e[i].to][j-k]-e[i].w);
36         }
37      }
38 }
39 int main(){
40     int v,w,k;
41     while(~scanf("%d %d",&n,&m)){
42         memset(head,-1,sizeof head);
43         for(int i = 1; i <= n - m; ++i){
44             scanf("%d",&k);
45             while(k--){
46                 scanf("%d %d",&v,&w);
47                 add(i,v,w);
48             }
49         }
50         for(int i = n - m + 1; i <= n; ++i)
51             scanf("%d",val+i);
52         dfs(1);
53         int ans = 0;
54         for(int i = m; i >= 1; --i)
55         if(dp[1][i] >= 0) {
56             ans = i;
57             break;
58         }
59         printf("%d\n",ans);
60     }
61     return 0;
62 }
View Code

 

转载于:https://www.cnblogs.com/crackpotisback/p/4403645.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值