Almost Sorted Array(o(nlgn)求解LIS)

本文深入探讨了AlmostSortedArray问题的高效解决方案,该问题旨在判断一个数组是否通过移除一个元素即可变为有序。文章提供了使用LIS算法进行优化的代码示例,并详细解释了其背后的逻辑,对于理解算法优化及LIS的应用具有较高的参考价值。

Almost Sorted Array

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 10562    Accepted Submission(s): 2449


Problem Description
We are all familiar with sorting algorithms: quick sort, merge sort, heap sort, insertion sort, selection sort, bubble sort, etc. But sometimes it is an overkill to use these algorithms for an almost sorted array.

We say an array is sorted if its elements are in non-decreasing order or non-increasing order. We say an array is almost sorted if we can remove exactly one element from it, and the remaining array is sorted. Now you are given an array  a1,a2,,an, is it almost sorted?
 

 

Input
The first line contains an integer  T indicating the total number of test cases. Each test case starts with an integer n in one line, then one line with n integers a1,a2,,an.

1T2000
2n105
1ai105
There are at most 20 test cases with n>1000.
 
Output
For each test case, please output "`YES`" if it is almost sorted. Otherwise, output "`NO`" (both without quotes).
 

 

Sample Input
3
3
2 1 7
3
3 2 1
5
3 1 4 1 5
 

 

Sample Output
YES
YES
NO
 

 

Source
 

 

Recommend
hujie

onlgn求解LIS的基本思想是,用dp[i]保存长度为i的最长子序列的最大值的最小值。
遍历数组,如果a >= dp[len],接到后面,否则,在dp中寻找第一个大于这a的数,把他替换掉,原因很好想,要想使得序列足够长,那么dp[i]越小越好。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int maxn = 100000 + 5;

int n, val[maxn];
int cnt1, cnt2, dp[maxn];

int main() {
   int t;
   int a, temp;
   scanf("%d", &t);
   while(t --) {
      cnt1 = 0, cnt2 = 0;
      memset(dp, 0, sizeof dp);
      scanf("%d", &n);
      for(int i = 0; i < n; i ++) scanf("%d", &val[i]);
      for(int i = 0; i < n; i ++) {
         if(val[i] >= dp[cnt1]) dp[++ cnt1] = val[i];
         else {
            temp = upper_bound(dp + 1, dp + 1 + cnt1, val[i]) - dp;
            dp[temp] = val[i];
         }
      }
      memset(dp, 0, sizeof dp);
      for(int i = n - 1; i >= 0; i --) {
         if(val[i] >= dp[cnt2]) dp[++ cnt2] = val[i];
         else {
            temp = upper_bound(dp + 1, dp + 1 + cnt2, val[i]) - dp;
            dp[temp] = val[i];
         }
      }
      if(cnt1 >= n - 1 || cnt2 >= n - 1) printf("YES\n");
      else printf("NO\n");
   }
   return 0;
}

 

转载于:https://www.cnblogs.com/bianjunting/p/11586531.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值