Almost Sorted Array
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 10562 Accepted Submission(s): 2449
Problem Description
We are all familiar with sorting algorithms: quick sort, merge sort, heap sort, insertion sort, selection sort, bubble sort, etc. But sometimes it is an overkill to use these algorithms for an almost sorted array.
We say an array is sorted if its elements are in non-decreasing order or non-increasing order. We say an array is almost sorted if we can remove exactly one element from it, and the remaining array is sorted. Now you are given an array a1,a2,…,an, is it almost sorted?
We say an array is sorted if its elements are in non-decreasing order or non-increasing order. We say an array is almost sorted if we can remove exactly one element from it, and the remaining array is sorted. Now you are given an array a1,a2,…,an, is it almost sorted?
Input
The first line contains an integer
T indicating the total number of test cases. Each test case starts with an integer n in one line, then one line with n integers a1,a2,…,an.
1≤T≤2000
2≤n≤105
1≤ai≤105
There are at most 20 test cases with n>1000.
1≤T≤2000
2≤n≤105
1≤ai≤105
There are at most 20 test cases with n>1000.
Output
For each test case, please output "`YES`" if it is almost sorted. Otherwise, output "`NO`" (both without quotes).
Sample Input
3
3
2 1 7
3
3 2 1
5
3 1 4 1 5
Sample Output
YES
YES
NO
Source
Recommend
hujie
onlgn求解LIS的基本思想是,用dp[i]保存长度为i的最长子序列的最大值的最小值。
遍历数组,如果a >= dp[len],接到后面,否则,在dp中寻找第一个大于这a的数,把他替换掉,原因很好想,要想使得序列足够长,那么dp[i]越小越好。
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn = 100000 + 5; int n, val[maxn]; int cnt1, cnt2, dp[maxn]; int main() { int t; int a, temp; scanf("%d", &t); while(t --) { cnt1 = 0, cnt2 = 0; memset(dp, 0, sizeof dp); scanf("%d", &n); for(int i = 0; i < n; i ++) scanf("%d", &val[i]); for(int i = 0; i < n; i ++) { if(val[i] >= dp[cnt1]) dp[++ cnt1] = val[i]; else { temp = upper_bound(dp + 1, dp + 1 + cnt1, val[i]) - dp; dp[temp] = val[i]; } } memset(dp, 0, sizeof dp); for(int i = n - 1; i >= 0; i --) { if(val[i] >= dp[cnt2]) dp[++ cnt2] = val[i]; else { temp = upper_bound(dp + 1, dp + 1 + cnt2, val[i]) - dp; dp[temp] = val[i]; } } if(cnt1 >= n - 1 || cnt2 >= n - 1) printf("YES\n"); else printf("NO\n"); } return 0; }
本文深入探讨了AlmostSortedArray问题的高效解决方案,该问题旨在判断一个数组是否通过移除一个元素即可变为有序。文章提供了使用LIS算法进行优化的代码示例,并详细解释了其背后的逻辑,对于理解算法优化及LIS的应用具有较高的参考价值。
1928

被折叠的 条评论
为什么被折叠?



