LR中的时间戳函数web_save_timestamp_param

以前真没注意过后面看某个群有人说到这个函数一查,还真有,那么处理时间戳就简单很多了,我们经常在各种网站上看到类似于这样的时间戳

1302245899530
51Testing软件测试网"d bLq!uR&am
做时间戳的目的是为了JS缓存和防止CSRF,在LR中可以简单的使用下面这个函数

web_save_timestamp_param

来生成时间戳
 

 web_save_timestamp_param("tStamp", LAST);  

 lr_output_message("%s",lr_eval_string("{tStamp}"));

 

brokerDetail.c(49): web_save_timestamp_param("web_save_timestamp_param") was successful   [MsgId: MMSG-26392]
brokerDetail.c(53): 1433760182344

 

我想生成唯一的一个用户名。想到用web_save_timestamp_param函数。web_save_timestamp_param function saves the current timestamp to LoadRunner parameter. Timestamp is the number of milliseconds since midnight January 1st, 1970 (also known as Unix Epoch).
说这个函数是存储毫秒级的时间戳。而我刚取到的时间戳是1302245899530,这个时间戳我完全看不懂呀!跟时间不搭边呀现在时间是14:58分钟。

后来才发现取到的时间戳是现在时间减去现在的时间 减去 1970年1月1日0点00 的时间 ,然后换算成毫秒。

 

 

 

 

Lr_save_datetime函数的使用

 

    最近几天在录制测试脚本,希望能有一个方法自动保存系统时间,以便能够更好的进行分辨,于是在LR的帮助函数中查找到了lr_save_datetime函数,一试验,感觉非常不错,满足了我的要求,下面就将lr_save_datetime函数的使用方法记载下来,以便后用:

<!--[if !supportEmptyParas]--> <!--[endif]-->

函数原型:

voidlr_save_datetime(const char *format,intoffset,const char *name);

<!--[if !supportEmptyParas]--> <!--[endif]-->

format期望输出的日期格式比如说%Y、%m、%d、%X等等

<!--[if !supportEmptyParas]--> <!--[endif]-->

offset:类似与表示时间的一些关键字常量,主要有DATE_NOW, TIME_NOW, ONE_DAY, ONE_HOUR, ONE_MIN,他们可以单独使用,也可以联合使用,比如DATE_NOW + TIME_NOW

<!--[if !supportEmptyParas]--> <!--[endif]-->

name:期望将时间保存到的那个参数的名称

<!--[if !supportEmptyParas]--> <!--[endif]-->

举例:

lr_save_datetime(“%Y-%m-%d %x”,DATE_NOW+TIME_NOW,“DateTimeParam”);

lr_output_message(lr_eval_string("Now is {DateTimeParam}"));

 

 

 

 

loadrunner函数 lr_save_datetime



今天到51testing的blog里查看文章《Loadrunner获取当前系统时间》的回复,51testing的网友persist提到了一个lr函数实现的方法也可以实现,在这里非常感谢persist;只有

交流和不断的学习,我们的技术水平才能进步哈!!

本人在51testing的blog全部为原创,转载请注明!!

扯的有点远了,还是看这个函数吧!!

 

【lr_save_datetime】

void lr_save_datetime(const char *format, int offset, const char *name);

中文解释:
lr_save_datetime将当前日期和时间,或具有指定偏移的日期和时间保存在参数中。如果达到MAX_DATETIME_LEN个字符,结果字符串将被截断。

参数说明:
1、const char *format
   格式化信息
   同fopen、lr_message等相同;例如:"the first is %s"

2、int offset
   时间的偏移量
     DATE_NOW(现在的日期)
     TIME_NOW(现在的时间)
     ONE_DAY(一天的时间)
     ONE_HOUR(一小时的时间)
     ONE_MIN(一分钟的时间)

   需要注意的是,时间的偏移量可以使用公式,例如:DATE_NOW+ONE_DAY

   这样,我们就可以取得昨天、明天的日期了
     DATE_NOW-ONE_DAY(昨天)
     DATE_NOW+ONE_DAY(明天)

   那么,我们就可以使用如下表示得到前天的日期
     lr_save_datetime("%Y-%B-%d",DATE_NOW-2*(ONE_DAY),"abc");
     lr_save_datetime("%Y-%B-%d",DATE_NOW-2*24*(ONE_HOUR),"abc");
     lr_save_datetime("%Y-%B-%d",DATE_NOW-2*24*60*(ONE_MIN),"abc");

   当然,我们也可以使用如下表示2个小时后的时间
     lr_save_datetime("%H:%M:%S",TIME_NOW+2*(ONE_HOUR),"ab");   
     lr_save_datetime("%H:%M:%S",TIME_NOW+2*60*(ONE_MIN),"ab");
 

3、const char *name
   参数保存的参数名;使用时lr_eval_string("{参数名}")

示例如下:
===========================================
Action()
{
    lr_save_datetime("%y-%b-%d",DATE_NOW-2*24*(ONE_HOUR),"abc");
     //保存前天的日期到参数abc中
    lr_message("the day before yesterday is:%s",lr_eval_string("{abc}"));
     //输出abc的值
    lr_save_datetime("%H:%M:%S",TIME_NOW+2*(ONE_HOUR),"ab");
     //保存2个小时后的时间到参数ab中
    lr_message("the time after two hour is:%s",lr_eval_string("{ab}"));
     //输入ab的值
    return 0;
}


执行结果如下:
the day before yesterday is:07-七月-04
the time after two hour is:15:33:41
===========================================


附:《lr_save_datetime格式参数表》
%a 星期几的简写
%A 星期几的全称
%b 月分的简写
%B 月份的全称
%c 标准的日期的时间串
%C 年份的后两位数字
%d 十进制表示的每月的第几天
%D 月/天/年
%e 在两字符域中,十进制表示的每月的第几天
%F 年-月-日
%g 年份的后两位数字,使用基于周的年
%G 年分,使用基于周的年
%h 简写的月份名
%H 24小时制的小时
%I 12小时制的小时
%j 十进制表示的每年的第几天
%m 十进制表示的月份
%M 十时制表示的分钟数
%n 新行符
%p 本地的AM或PM的等价显示
%r 12小时的时间
%R 显示小时和分钟:hh:mm
%S 十进制的秒数
%t 水平制表符
%T 显示时分秒:hh:mm:ss
%u 每周的第几天,星期一为第一天 (值从0到6,星期一为0)
%U 第年的第几周,把星期日做为第一天(值从0到53)
%V 每年的第几周,使用基于周的年
%w 十进制表示的星期几(值从0到6,星期天为0)
%W 每年的第几周,把星期一做为第一天(值从0到53)
%x 标准的日期串
%X 标准的时间串
%y 不带世纪的十进制年份(值从0到99)
%Y 带世纪部分的十制年份
%z,%Z 时区名称,如果不能得到时区名称则返回空字符。
%% 百分号

 

转载于:https://www.cnblogs.com/qmfsun/p/4561705.html

import os import time import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.metrics import mean_absolute_error, mean_squared_error import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader, TensorDataset from torch.optim.lr_scheduler import ReduceLROnPlateau # 设置随机种子确保结果可复现 torch.manual_seed(42) np.random.seed(42) sns.set_style('whitegrid') # 设备配置 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"使用设备: {device}") # 1. 数据加载与预处理函数 # -------------------------------------------------- def load_and_preprocess_data(): """加载并预处理所有数据源""" print("开始数据加载与预处理...") start_time = time.time() # 加载EC气象数据 ec_df = pd.read_csv('阿拉山口风电场_EC_data.csv', parse_dates=['生成日期', '预测日期']) ec_df = ec_df[ec_df['场站名'] == '阿拉山口风电场'] # 计算EC风速和风向 ec_df['EC风速(m/s)'] = np.sqrt(ec_df['U风分量(m/s)']**2 + ec_df['V风分量(m/s)']**2) ec_df['EC风向(度)'] = np.degrees(np.arctan2(ec_df['V风分量(m/s)'], ec_df['U风分量(m/s)'])) % 360 # 添加EC数据可用时间(生成时间+12小时) ec_df['可用时间'] = ec_df['生成日期'] + pd.Timedelta(hours=12) # 选择关键特征 ec_features = [ '可用时间', '预测日期', 'EC风速(m/s)', 'EC风向(度)', '位势高度_850hPa(gpm)', '温度_850hPa(K)', '相对湿度_850hPa(%)', '位势高度_500hPa(gpm)', '温度_500hPa(K)' ] ec_df = ec_df[ec_features] # 加载风机数据 turbine_df = pd.read_csv('阿拉山口风电场风机数据.csv', encoding='gbk', parse_dates=[0]) turbine_df.columns = ['timestamp', 'wind_speed', 'active_power'] # 加载远动数据 scada_df = pd.read_csv('阿拉山口风电场远动数据.csv', encoding='gbk', parse_dates=[0]) scada_df.columns = ['timestamp', 'active_power_total'] # 合并风机和远动数据 power_df = pd.merge(turbine_df[['timestamp', 'wind_speed']], scada_df, on='timestamp', how='outer') # 按时间排序并填充缺失值 power_df.sort_values('timestamp', inplace=True) power_df['active_power_total'].ffill(inplace=True) power_df['wind_speed'].ffill(inplace=True) # 创建完整的时间序列索引(15分钟间隔) full_range = pd.date_range( start=power_df['timestamp'].min(), end=power_df['timestamp'].max(), freq='15T' ) power_df = power_df.set_index('timestamp').reindex(full_range).reset_index() power_df.rename(columns={'index': 'timestamp'}, inplace=True) power_df[['wind_speed', 'active_power_total']] = power_df[['wind_speed', 'active_power_total']].ffill() # 合并EC数据到主数据集 ec_data = [] for idx, row in power_df.iterrows(): ts = row['timestamp'] # 获取可用的EC预测(可用时间 <= 当前时间) available_ec = ec_df[ec_df['可用时间'] <= ts] if not available_ec.empty: # 获取最近发布的EC数据 latest_gen = available_ec['可用时间'].max() latest_ec = available_ec[available_ec['可用时间'] == latest_gen] # 找到最接近当前时间点的预测 time_diff = (latest_ec['预测日期'] - ts).abs() closest_idx = time_diff.idxmin() ec_point = latest_ec.loc[closest_idx].copy() ec_point['timestamp'] = ts ec_data.append(ec_point) # 创建EC数据DataFrame并合并 ec_ts_df = pd.DataFrame(ec_data) merged_df = pd.merge(power_df, ec_ts_df, on='timestamp', how='left') # 填充缺失的EC数据 ec_cols = [col for col in ec_ts_df.columns if col not in ['timestamp', '可用时间', '预测日期']] for col in ec_cols: merged_df[col] = merged_df[col].interpolate(method='time') # 添加时间特征 merged_df['hour'] = merged_df['timestamp'].dt.hour merged_df['day_of_week'] = merged_df['timestamp'].dt.dayofweek merged_df['day_of_year'] = merged_df['timestamp'].dt.dayofyear merged_df['month'] = merged_df['timestamp'].dt.month # 计算实际风向(如果有测风塔数据,这里使用EC风向) merged_df['风向(度)'] = merged_df['EC风向(度)'] # 移除包含NaN的行 merged_df.dropna(inplace=True) # 特征选择 feature_cols = [ 'wind_speed', 'active_power_total', 'EC风速(m/s)', '风向(度)', '位势高度_850hPa(gpm)', '温度_850hPa(K)', '相对湿度_850hPa(%)', '位势高度_500hPa(gpm)', '温度_500hPa(K)', 'hour', 'day_of_week', 'day_of_year', 'month' ] target_col = 'active_power_total' print(f"数据处理完成! 耗时: {time.time()-start_time:.2f}秒") print(f"数据集形状: {merged_df.shape}") print(f"特征数量: {len(feature_cols)}") return merged_df[feature_cols], merged_df[target_col], merged_df['timestamp'] # 2. 数据准备类 (PyTorch Dataset) # -------------------------------------------------- class WindPowerDataset(Dataset): """风功率预测数据集类""" def __init__(self, X, y, look_back, forecast_steps): """ :param X: 特征数据 (n_samples, n_features) :param y: 目标数据 (n_samples,) :param look_back: 回溯时间步长 :param forecast_steps: 预测步长 """ self.X = X self.y = y self.look_back = look_back self.forecast_steps = forecast_steps self.n_samples = len(X) - look_back - forecast_steps + 1 def __len__(self): return self.n_samples def __getitem__(self, idx): # 获取历史序列 x_seq = self.X[idx:idx+self.look_back] # 获取未来目标序列 y_seq = self.y[idx+self.look_back:idx+self.look_back+self.forecast_steps] # 转换为PyTorch张量 x_tensor = torch.tensor(x_seq, dtype=torch.float32) y_tensor = torch.tensor(y_seq, dtype=torch.float32) return x_tensor, y_tensor # 3. LSTM模型 (PyTorch实现) # -------------------------------------------------- class WindPowerLSTM(nn.Module): """风功率预测LSTM模型""" def __init__(self, input_size, hidden_size, num_layers, output_steps): """ :param input_size: 输入特征维度 :param hidden_size: LSTM隐藏层大小 :param num_layers: LSTM层数 :param output_steps: 输出步长 """ super(WindPowerLSTM, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.output_steps = output_steps # LSTM层 self.lstm = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True, dropout=0.2 if num_layers > 1 else 0 ) # 全连接层 self.fc = nn.Sequential( nn.Linear(hidden_size, 128), nn.ReLU(), nn.Dropout(0.3), nn.Linear(128, 64), nn.ReLU(), nn.Dropout(0.2), nn.Linear(64, output_steps) ) def forward(self, x): # 初始化隐藏状态 h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) # 前向传播LSTM out, _ = self.lstm(x, (h0, c0)) # 只取最后一个时间步的输出 out = out[:, -1, :] # 全连接层 out = self.fc(out) return out # 4. 训练和评估函数 # -------------------------------------------------- def train_model(model, train_loader, val_loader, criterion, optimizer, scheduler, epochs, model_name): """训练模型""" print(f"\n开始训练 {model_name} 模型...") start_time = time.time() best_val_loss = float('inf') history = {'train_loss': [], 'val_loss': []} for epoch in range(epochs): # 训练阶段 model.train() train_loss = 0.0 for inputs, targets in train_loader: inputs, targets = inputs.to(device), targets.to(device) # 前向传播 outputs = model(inputs) loss = criterion(outputs, targets) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) # 验证阶段 model.eval() val_loss = 0.0 with torch.no_grad(): for inputs, targets in val_loader: inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs) loss = criterion(outputs, targets) val_loss += loss.item() * inputs.size(0) # 计算平均损失 train_loss = train_loss / len(train_loader.dataset) val_loss = val_loss / len(val_loader.dataset) history['train_loss'].append(train_loss) history['val_loss'].append(val_loss) # 更新学习率 if scheduler: scheduler.step(val_loss) # 保存最佳模型 if val_loss < best_val_loss: best_val_loss = val_loss torch.save(model.state_dict(), f'best_{model_name}_model.pth') # 打印进度 if (epoch + 1) % 5 == 0: print(f"Epoch [{epoch+1}/{epochs}] - Train Loss: {train_loss:.6f}, Val Loss: {val_loss:.6f}") print(f"训练完成! 耗时: {time.time()-start_time:.2f}秒") print(f"最佳验证损失: {best_val_loss:.6f}") return history def evaluate_model(model, test_loader, scaler, model_name): """评估模型性能""" model.eval() actuals = [] predictions = [] with torch.no_grad(): for inputs, targets in test_loader: inputs = inputs.to(device) # 预测 outputs = model(inputs) # 反归一化 outputs_np = outputs.cpu().numpy() targets_np = targets.numpy() # 反归一化 outputs_inv = scaler.inverse_transform(outputs_np) targets_inv = scaler.inverse_transform(targets_np.reshape(-1, 1)).flatten() # 收集结果 actuals.extend(targets_inv) predictions.extend(outputs_inv.flatten()) # 转换为numpy数组 actuals = np.array(actuals) predictions = np.array(predictions) # 计算性能指标 mae = mean_absolute_error(actuals, predictions) rmse = np.sqrt(mean_squared_error(actuals, predictions)) print(f"\n{model_name} 模型评估结果:") print(f"MAE: {mae:.2f} kW") print(f"RMSE: {rmse:.2f} kW") return actuals, predictions, mae, rmse # 5. 可视化函数 # -------------------------------------------------- def plot_predictions(actuals, predictions, timestamps, model_name, forecast_steps, mae): """可视化预测结果""" # 创建结果DataFrame results = pd.DataFrame({ 'timestamp': timestamps, 'actual': actuals, 'predicted': predictions }) # 设置时间索引 results.set_index('timestamp', inplace=True) # 选择一段代表性的时间序列展示 sample = results.iloc[1000:1300] plt.figure(figsize=(15, 7)) # 绘制实际值 plt.plot(sample.index, sample['actual'], label='实际功率', color='blue', alpha=0.7, linewidth=2) # 绘制预测值 plt.plot(sample.index, sample['predicted'], label='预测功率', color='red', alpha=0.7, linestyle='--', linewidth=2) plt.title(f'{model_name}风功率预测 (预测步长: {forecast_steps}步, MAE: {mae:.2f} kW)', fontsize=14) plt.xlabel('时间', fontsize=12) plt.ylabel('有功功率 (kW)', fontsize=12) plt.legend(fontsize=12) plt.grid(True, linestyle='--', alpha=0.7) plt.xticks(rotation=45) plt.tight_layout() plt.savefig(f'{model_name}_prediction_plot.png', dpi=300) plt.show() return results def plot_training_history(history, model_name): """绘制训练过程中的损失曲线""" plt.figure(figsize=(12, 6)) # 绘制训练损失 plt.plot(history['train_loss'], label='训练损失') # 绘制验证损失 if 'val_loss' in history: plt.plot(history['val_loss'], label='验证损失') plt.title(f'{model_name} 训练过程', fontsize=14) plt.xlabel('训练轮次', fontsize=12) plt.ylabel('损失 (MSE)', fontsize=12) plt.legend(fontsize=12) plt.grid(True, linestyle='--', alpha=0.7) plt.tight_layout() plt.savefig(f'{model_name}_training_history.png', dpi=300) plt.show() # 6. 主函数 # -------------------------------------------------- def main(): # 加载数据 X, y, timestamps = load_and_preprocess_data() # 定义预测配置 ULTRA_SHORT_CONFIG = { 'name': '超短期', 'look_back': 24, # 6小时历史 (24*15min) 'forecast_steps': 16, # 4小时预测 (16*15min) 'batch_size': 64, 'hidden_size': 128, 'num_layers': 2, 'epochs': 100, 'lr': 0.001 } SHORT_TERM_CONFIG = { 'name': '短期', 'look_back': 96, # 24小时历史 (96*15min) 'forecast_steps': 288, # 72小时预测 (288*15min) 'batch_size': 32, 'hidden_size': 256, 'num_layers': 3, 'epochs': 150, 'lr': 0.0005 } # 准备超短期预测数据集 print("\n准备超短期预测数据集...") # 数据标准化 X_scaler = StandardScaler() y_scaler = StandardScaler() X_scaled = X_scaler.fit_transform(X) y_scaled = y_scaler.fit_transform(y.values.reshape(-1, 1)).flatten() # 创建数据集 dataset = WindPowerDataset(X_scaled, y_scaled, ULTRA_SHORT_CONFIG['look_back'], ULTRA_SHORT_CONFIG['forecast_steps']) # 划分数据集 train_size = int(0.8 * len(dataset)) val_size = int(0.1 * len(dataset)) test_size = len(dataset) - train_size - val_size train_dataset, val_dataset, test_dataset = torch.utils.data.random_split( dataset, [train_size, val_size, test_size] ) # 创建数据加载器 train_loader = DataLoader(train_dataset, batch_size=ULTRA_SHORT_CONFIG['batch_size'], shuffle=True) val_loader = DataLoader(val_dataset, batch_size=ULTRA_SHORT_CONFIG['batch_size']) test_loader = DataLoader(test_dataset, batch_size=ULTRA_SHORT_CONFIG['batch_size']) # 创建模型 model_ultra = WindPowerLSTM( input_size=X.shape[1], hidden_size=ULTRA_SHORT_CONFIG['hidden_size'], num_layers=ULTRA_SHORT_CONFIG['num_layers'], output_steps=ULTRA_SHORT_CONFIG['forecast_steps'] ).to(device) # 损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.Adam(model_ultra.parameters(), lr=ULTRA_SHORT_CONFIG['lr']) scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5, verbose=True) # 训练模型 history_ultra = train_model( model_ultra, train_loader, val_loader, criterion, optimizer, scheduler, ULTRA_SHORT_CONFIG['epochs'], 'ultra_short' ) # 评估模型 actuals_ultra, preds_ultra, mae_ultra, rmse_ultra = evaluate_model( model_ultra, test_loader, y_scaler, '超短期' ) # 可视化结果 plot_training_history(history_ultra, '超短期模型') # 获取对应的时间戳 ultra_timestamps = timestamps[ULTRA_SHORT_CONFIG['look_back']:][:len(actuals_ultra)] results_ultra = plot_predictions( actuals_ultra, preds_ultra, ultra_timestamps, '超短期', ULTRA_SHORT_CONFIG['forecast_steps'], mae_ultra ) # 准备短期预测数据集 print("\n准备短期预测数据集...") # 创建数据集 dataset_short = WindPowerDataset(X_scaled, y_scaled, SHORT_TERM_CONFIG['look_back'], SHORT_TERM_CONFIG['forecast_steps']) # 划分数据集 train_size_short = int(0.8 * len(dataset_short)) val_size_short = int(0.1 * len(dataset_short)) test_size_short = len(dataset_short) - train_size_short - val_size_short train_dataset_short, val_dataset_short, test_dataset_short = torch.utils.data.random_split( dataset_short, [train_size_short, val_size_short, test_size_short] ) # 创建数据加载器 train_loader_short = DataLoader(train_dataset_short, batch_size=SHORT_TERM_CONFIG['batch_size'], shuffle=True) val_loader_short = DataLoader(val_dataset_short, batch_size=SHORT_TERM_CONFIG['batch_size']) test_loader_short = DataLoader(test_dataset_short, batch_size=SHORT_TERM_CONFIG['batch_size']) # 创建模型 model_short = WindPowerLSTM( input_size=X.shape[1], hidden_size=SHORT_TERM_CONFIG['hidden_size'], num_layers=SHORT_TERM_CONFIG['num_layers'], output_steps=SHORT_TERM_CONFIG['forecast_steps'] ).to(device) # 损失函数和优化器 optimizer_short = optim.Adam(model_short.parameters(), lr=SHORT_TERM_CONFIG['lr']) scheduler_short = ReduceLROnPlateau(optimizer_short, mode='min', factor=0.5, patience=10, verbose=True) # 训练模型 history_short = train_model( model_short, train_loader_short, val_loader_short, criterion, optimizer_short, scheduler_short, SHORT_TERM_CONFIG['epochs'], 'short_term' ) # 评估模型 actuals_short, preds_short, mae_short, rmse_short = evaluate_model( model_short, test_loader_short, y_scaler, '短期' ) # 可视化结果 plot_training_history(history_short, '短期模型') # 获取对应的时间戳 short_timestamps = timestamps[SHORT_TERM_CONFIG['look_back']:][:len(actuals_short)] results_short = plot_predictions( actuals_short, preds_short, short_timestamps, '短期', SHORT_TERM_CONFIG['forecast_steps'], mae_short ) # 最终报告 print("\n" + "="*50) print("风功率预测模型训练完成!") print("="*50) print(f"超短期模型 (4小时预测):") print(f" - 回溯步长: {ULTRA_SHORT_CONFIG['look_back']} (6小时)") print(f" - 预测步长: {ULTRA_SHORT_CONFIG['forecast_steps']} (4小时)") print(f" - 测试集MAE: {mae_ultra:.2f} kW") print(f" - 测试集RMSE: {rmse_ultra:.2f} kW") print(f"\n短期模型 (72小时预测):") print(f" - 回溯步长: {SHORT_TERM_CONFIG['look_back']} (24小时)") print(f" - 预测步长: {SHORT_TERM_CONFIG['forecast_steps']} (72小时)") print(f" - 测试集MAE: {mae_short:.2f} kW") print(f" - 测试集RMSE: {rmse_short:.2f} kW") print("="*50) # 保存预测结果 results_df = pd.DataFrame({ 'timestamp': short_timestamps, '实际功率': actuals_short, '超短期预测': results_ultra['predicted'].values[:len(actuals_short)], '短期预测': preds_short }) results_df.to_csv('风功率预测结果.csv', index=False) print("预测结果已保存到 '风功率预测结果.csv'") if __name__ == "__main__": main() 请在上述的代码基础上修改,本次修改要求只使用"阿拉山口风电场_EC_data"和"阿拉山口风电场风机数据"这两个数据集进行训练和预测。
07-22
# -*- coding: utf-8 -*- # 重新增加了然门控变得更快得方式:1.beta_l0更大;2.log_alpha的学习率变为2.0;3.添加熵正则化。 from __future__ import annotations import math import os import random import time from collections import deque from pathlib import Path from typing import Tuple import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim.lr_scheduler import CosineAnnealingLR from torch.utils.data import DataLoader from torchvision import datasets, models, transforms from sklearn.cluster import KMeans import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import ( silhouette_score, silhouette_samples, calinski_harabasz_score, davies_bouldin_score, ) from sklearn.manifold import TSNE try: import umap # 只有 umap-learn 才带 UMAP 类 HAS_UMAP = hasattr(umap, "UMAP") or hasattr(umap, "umap_") except ImportError: HAS_UMAP = False from datetime import datetime from matplotlib.patches import Rectangle import warnings # -------------------------- Global configuration -------------------------- # class CFG: # Paths data_root: str = r"D:\dataset\TILDA_8class_73" save_root: str = r"D:\SCI_exp\7_29\exp_file" # Dataset & DL batch_size: int = 128 num_workers: int = 0 # tune to your CPU img_size: int = 224 # F2013 images are 48×48; we upscale for ResNet‐18 # Model dimensions (§3.5.1) d_backbone: int = 512 d_proj: int = 128 K_max: int = 3 mem_size: int = 4096 # Optimisation (§3.5.1) lr_warmup: float = 1e-3 lr_joint: float = 3e-4 lr_ft: float = 1e-4 weight_decay: float = 5e-4 n_epochs_warmup: int = 15#5 n_epochs_joint: int = 150 #20 n_epochs_ft: int = 25 #15 # Loss hyper‑params lambda1: float = 0.5 # push–pull alpha_proto: float = 0.1 scale_ce: float = 30.0 gamma_se: float = 20 # 自表示权重 0.5 # ---------- Hard-Concrete ---------- tau0_hc: float = 1.5 # 初始温度 tau_min_hc: float = 0.15 # 最低温度 anneal_epochs_hc: int = 5 gamma_hc: float = -0.1 # stretch 下界 zeta_hc: float = 1.1 # stretch 上界 beta_l0: float = 5e-2 # L0 正则系数 5e-2 hc_threshold: float = 0.35 # Misc seed: int = 42 device: str = "cuda" if torch.cuda.is_available() else "cpu" # ---------- datetime ---------- # def get_timestamp(): """获取当前时间戳,格式:YYYYMMDD_HHMMSS""" return datetime.now().strftime("%Y%m%d_%H%M%S") # ---------- diagnostics ---------- # MAX_SAMPLED = 5_000 # None → 全量 timestamp = get_timestamp() # 获取当前时间戳 DIAG_DIR = Path(CFG.save_root) / f"diagnostics_{timestamp}" # 文件夹名包含时间戳 DIAG_DIR.mkdir(parents=True, exist_ok=True) # -------------------------- Reproducibility -------------------------- # torch.manual_seed(CFG.seed) random.seed(CFG.seed) # -------------------------- Utility functions -------------------------- # def L2_normalise(t: torch.Tensor, dim: int = 1, eps: float = 1e-12) -> torch.Tensor: return F.normalize(t, p=2, dim=dim, eps=eps) def pairwise_cosine(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """Compute cosine similarity between all pairs in *x* and *y*.""" x = L2_normalise(x) y = L2_normalise(y) return x @ y.T # (N, M) # -------------------------- Memory bank (FIFO queue) -------------------------- # class MemoryBank: """Fixed‑size FIFO queue storing (p, q, y_c). All tensors are detached.""" def __init__(self, dim: int, size: int): self.size = size self.dim = dim self.ptr = 0 self.is_full = False # pre‑allocate self.p_bank = torch.zeros(size, dim, device=CFG.device) self.q_bank = torch.zeros_like(self.p_bank) self.y_bank = torch.zeros(size, dtype=torch.long, device=CFG.device) @torch.no_grad() def enqueue(self, p: torch.Tensor, q: torch.Tensor, y: torch.Tensor): b = p.size(0) if b > self.size: p, q, y = p[-self.size:], q[-self.size:], y[-self.size:] b = self.size idx = (torch.arange(b, device=CFG.device) + self.ptr) % self.size self.p_bank[idx] = p.detach() self.q_bank[idx] = q.detach() self.y_bank[idx] = y.detach() self.ptr = (self.ptr + b) % self.size if self.ptr == 0: self.is_full = True def get(self) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: valid = self.size if self.is_full else self.ptr return ( self.p_bank[:valid].detach(), self.q_bank[:valid].detach(), self.y_bank[:valid].detach(), ) # -------------------------- Projection heads -------------------------- # class MLPHead(nn.Module): def __init__(self, in_dim: int, out_dim: int): super().__init__() self.mlp = nn.Sequential( nn.Linear(in_dim, out_dim//2, bias=False), nn.BatchNorm1d(out_dim//2), nn.ReLU(inplace=True), nn.Linear(out_dim//2, out_dim, bias=True), ) def forward(self, x: torch.Tensor): return self.mlp(x) # -------------------------- Cosine classifier -------------------------- # class CosineLinear(nn.Module): """Cosine classifier with fixed scale *s* (Eq. CE).""" def __init__(self, in_dim: int, n_classes: int, s: float = CFG.scale_ce): super().__init__() self.s = s self.weight = nn.Parameter(torch.randn(n_classes, in_dim)) nn.init.xavier_uniform_(self.weight) def forward(self, x: torch.Tensor): # x ∈ ℝ^{B×d_p} x = L2_normalise(x) w = L2_normalise(self.weight) # logits = s * cos(θ) return self.s * (x @ w.T) # -------------------------- BaPSTO model -------------------------- # class BaPSTO(nn.Module): """Backbone + DASSER heads + BPGSNet prototypes & gates.""" def __init__(self, n_classes: int): super().__init__() # --- Backbone (ResNet‑18) ------------------------------------------------ resnet = models.resnet18(weights=models.ResNet18_Weights.IMAGENET1K_V1) pretrained_path = Path(CFG.save_root) / "resnet18_best_TILDA_8class_73_7446.pth" if pretrained_path.exists(): print(f"Loading pretrained weights from {pretrained_path}") pretrained = torch.load(pretrained_path, map_location=CFG.device, weights_only=True) # 创建临时模型来获取预训练权重的正确映射 temp_model = models.resnet18() temp_model.fc = nn.Linear(temp_model.fc.in_features, n_classes) temp_model.load_state_dict(pretrained["state_dict"], strict=False) # 复制预训练权重到我们的模型中(除了fc层) resnet_dict = resnet.state_dict() pretrained_dict = {k: v for k, v in temp_model.state_dict().items() if k in resnet_dict and 'fc' not in k} resnet_dict.update(pretrained_dict) resnet.load_state_dict(resnet_dict) print("✓ Successfully loaded pretrained backbone weights!") else: print(f"⚠️ Pretrained weights not found at {pretrained_path}. Using ImageNet weights.") # --- Backbone ------------------------------------------------ in_feat = resnet.fc.in_features # 512 resnet.fc = nn.Identity() self.backbone = resnet # project to d_backbone (512-64-128) #self.fc_backbone = nn.Linear(in_feat, CFG.d_backbone, bias=False) #nn.init.xavier_uniform_(self.fc_backbone.weight) # 这一句的 # --- Projection heads --------------------------------------------------- self.g_SA = MLPHead(CFG.d_backbone, CFG.d_proj) self.g_FV = MLPHead(CFG.d_backbone, CFG.d_proj) # Cosine classifier (coarse level) self.classifier = CosineLinear(CFG.d_proj, n_classes) # --- BPGSNet prototypes & gate logits ----------------------------------- self.prototypes = nn.Parameter( torch.randn(n_classes, CFG.K_max, CFG.d_proj) ) # (K_C, K_max, d_p) nn.init.xavier_uniform_(self.prototypes) self.log_alpha = nn.Parameter( torch.randn(n_classes, CFG.K_max) * 0.01 # 随机初始化 ) # (K_C, K_max) self.register_buffer("global_step", torch.tensor(0, dtype=torch.long)) # ---------------- Forward pass ---------------- # def forward(self, x: torch.Tensor, y_c: torch.Tensor, mem_bank: MemoryBank, use_bpgs: bool = True ) -> tuple[torch.Tensor, dict[str, float], torch.Tensor, torch.Tensor]: """Return full loss components (Section §3.3 & §3.4).""" B = x.size(0) # --- Backbone & projections ------------------------------------------- z = self.backbone(x) # (B, 512) p = L2_normalise(self.g_SA(z)) # (B, d_p) q = L2_normalise(self.g_FV(z)) # (B, d_p) bank_p, bank_q, bank_y = mem_bank.get() # ---------------- DASSER losses ---------------- # # L_SA, L_ortho, L_ce_dasser = self._dasser_losses( # p, q, y_c, bank_p, bank_q, bank_y # ) # total_loss = L_SA + L_ortho + L_ce_dasser # stats = { # "loss": total_loss.item(), # "L_SA": L_SA.item(), # "L_ortho": L_ortho.item(), # "L_ce_dasser": L_ce_dasser.item(), # } L_SA, L_ortho, L_ce_dasser, L_se = self._dasser_losses( p, q, y_c, bank_p, bank_q, bank_y ) total_loss = ( L_SA + L_ortho + L_ce_dasser + CFG.gamma_se * L_se # NEW ) stats = { "loss": total_loss.item(), "L_SA": L_SA.item(), "L_ortho": L_ortho.item(), "L_ce_dasser": L_ce_dasser.item(), "L_se": L_se.item(), # NEW } # ---------------- BPGSNet (conditional) -------- # if use_bpgs: L_ce_bpgs, L_proto, L_gate, coarse_logits = self._bpgs_losses(q, y_c) total_loss = total_loss + L_ce_bpgs + L_proto + L_gate stats.update({ "L_ce_bpgs": L_ce_bpgs.item(), "L_proto": L_proto.item(), "L_gate": L_gate.item(), }) else: coarse_logits = None return total_loss, stats, p.detach(), q.detach() # ---------------------- Internal helpers ---------------------- # def _dasser_losses( self, p: torch.Tensor, q: torch.Tensor, y_c: torch.Tensor, bank_p: torch.Tensor, bank_q: torch.Tensor, bank_y: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ DASSER 损失: • 语义对齐 L_SA • 正交 L_ortho • 粗粒度 CE L_ce • 自表示 L_se (NEW) """ # ---------- 拼 batch + memory ---------- # p_all = torch.cat([p, bank_p], dim=0) if bank_p.numel() > 0 else p q_all = torch.cat([q, bank_q], dim=0) if bank_q.numel() > 0 else q y_all = torch.cat([y_c, bank_y], dim=0) if bank_y.numel() > 0 else y_c # ---------- 1) 语义对齐 (原有) ---------- # G = pairwise_cosine(p_all, p_all) # (N,N) :contentReference[oaicite:2]{index=2} G.fill_diagonal_(0.0) same = y_all.unsqueeze(0) == y_all.unsqueeze(1) diff = ~same L_SA = ((same * (1 - G)).sum() + CFG.lambda1 * (diff * G.clamp_min(0)).sum()) / (p_all.size(0) ** 2) # ---------- 2) 正交 (原有) --------------- # L_ortho = (1.0 / CFG.d_proj) * (p_all @ q_all.T).pow(2).sum() # ---------- 3) 自表示 (NEW) -------------- # C_logits = pairwise_cosine(p_all, p_all) # 再算一次以免受上一步改动 C_logits.fill_diagonal_(-1e4) # 置 −∞ → softmax≈0 C = F.softmax(C_logits, dim=1) # 行归一化 :contentReference[oaicite:3]{index=3} Q_recon = C @ q_all # 线性重构 L_se = F.mse_loss(Q_recon, q_all) # :contentReference[oaicite:4]{index=4} # ---------- 4) 粗粒度 CE (原有) ---------- # logits_coarse = self.classifier(p) L_ce = F.cross_entropy(logits_coarse, y_c) return L_SA, L_ortho, L_ce, L_se # ---------------------- 放到 BaPSTO 类里,直接替换原函数 ---------------------- # def _bpgs_losses( self, q: torch.Tensor, y_c: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ 计算 BPGSNet 损失(正确的 log-sum-exp 版) """ B = q.size(0) # q是batch*128的矩阵,获得批次大小 K_C, K_M = self.prototypes.size(0), self.prototypes.size(1) # K_C 是类别数,K_M 是每个类别的原型数 # (1) 欧氏距离 d = ((q.unsqueeze(1).unsqueeze(2) - self.prototypes.unsqueeze(0)) ** 2).sum(-1) # (B,K_C,K_M) s = 30.0 # ===== (2) 退火温度 τ ===== # τ 线性退火 epoch = self.global_step.item() / self.steps_per_epoch tau = max(CFG.tau_min_hc, CFG.tau0_hc - (CFG.tau0_hc - CFG.tau_min_hc) * min(1., epoch / CFG.anneal_epochs_hc)) # ----- (3) Hard- ----- log_alpha = self.log_alpha # (C,K) z, _s = self._sample_hardConcrete(log_alpha, tau) # z: (C,K) g = z.unsqueeze(0) # (1,C,K) 广播到 batch # (1,C,K) # ----- (4) coarse logits ----- mask_logits = -d * s + torch.log(g + 1e-12) # (B,C,K) coarse_logits = torch.logsumexp(mask_logits, dim=2) # (B,C) # ----- (5) losses ----- L_ce = F.cross_entropy(coarse_logits, y_c) y_hat = torch.softmax(mask_logits.detach(), dim=2) # stop-grad L_proto = CFG.alpha_proto * (y_hat * d).mean() # ---------- Hard-Concrete 的 L0 正则 ---------- temp = (log_alpha - tau * math.log(-CFG.gamma_hc / CFG.zeta_hc)) # (C,K) p_active = torch.sigmoid(temp) # 激活概率 p_active 是解析期望 pa(z大于0) # 新增加得loss pa = torch.sigmoid(log_alpha) entropy_penalty = 0.05 * (pa * torch.log(pa + 1e-8) + (1-pa) * torch.log(1-pa + 1e-8)).mean() # 新增加得loss,控制全局稀疏率 L_gate = CFG.beta_l0 * p_active.mean() - entropy_penalty # L0 正则 beta_l0 控控制全局稀疏率 return L_ce, L_proto, L_gate, coarse_logits def _sample_hardConcrete(self, log_alpha, tau): """return z ~ HardConcrete, and its stretched unclipped \tilde z""" u = torch.rand_like(log_alpha).clamp_(1e-6, 1-1e-6) s = torch.sigmoid((log_alpha + torch.log(u) - torch.log(1-u)) / tau) s = s * (CFG.zeta_hc - CFG.gamma_hc) + CFG.gamma_hc # stretch z_hard = s.clamp(0.0, 1.0) z = z_hard + (s - s.detach()) # ST estimator,让梯度穿过 return z, s # z用于前向, s用于梯度 # -------------------------- K-means++ initialisation -------------------------- # @torch.no_grad() def kmeans_init(model: BaPSTO, loader: DataLoader): """Use q‑features to initialise prototypes with K‑means++ (§3.4.1).""" print("[Init] Running K‑means++ for prototype initialisation...") model.eval() all_q, all_y = [], [] for x, y in loader: x = x.to(CFG.device) z = L2_normalise(model.g_FV(model.backbone(x))) all_q.append(z.cpu()) all_y.append(y) all_q = torch.cat(all_q) # (N, d_p) all_y = torch.cat(all_y) # (N,) for c in range(model.prototypes.size(0)): feats = all_q[all_y == c] kmeans = KMeans( n_clusters=CFG.K_max, init="k-means++", n_init=10, max_iter=100, random_state=CFG.seed, ).fit(feats.numpy()) centroids = torch.from_numpy(kmeans.cluster_centers_).to(CFG.device) centroids = L2_normalise(centroids) # (K_max, d_p) model.prototypes.data[c] = centroids print("[Init] Prototype initialisation done.") # -------------------------- Training utilities -------------------------- # def accuracy(output: torch.Tensor, target: torch.Tensor) -> float: """Compute top‑1 accuracy (coarse).""" with torch.no_grad(): pred = output.argmax(dim=1) correct = pred.eq(target).sum().item() return correct / target.size(0) @torch.no_grad() def _collect_Q_labels(model: BaPSTO, loader: DataLoader): """遍历 *loader*,返回 (Q features, coarse-ID, proto-ID);采样上限 MAX_SAMPLED.""" model.eval() qs, cls, subs = [], [], [] for x, y in loader: x = x.to(CFG.device) q = L2_normalise(model.g_FV(model.backbone(x))) # (B,d) # —— 预测最近原型 idx —— # d = ((q.unsqueeze(1).unsqueeze(2) - model.prototypes.unsqueeze(0))**2).sum(-1) # (B,C,K) proto_id = d.view(d.size(0), -1).argmin(dim=1) # flatten idx = C*K + k qs.append(q.cpu()) cls.append(y) subs.append(proto_id.cpu()) if MAX_SAMPLED and (sum(len(t) for t in qs) >= MAX_SAMPLED): break Q = torch.cat(qs)[:MAX_SAMPLED] # (N,d) Yc = torch.cat(cls)[:MAX_SAMPLED] # coarse Ysub = torch.cat(subs)[:MAX_SAMPLED] # pseudo-fine return Q.numpy(), Yc.numpy(), Ysub.numpy() def _plot_heatmap(mat: np.ndarray, title: str, path: Path, boxes: list[tuple[int,int]] | None = None): """ mat : 排好序的相似度矩阵 boxes : [(row_start,row_end), ...];坐标在排序后的索引系中 """ plt.figure(figsize=(6, 5)) ax = plt.gca() im = ax.imshow(mat, cmap="viridis", aspect="auto") plt.colorbar(im) if boxes: # 逐个 coarse-class 画框 for s, e in boxes: w = e - s rect = Rectangle((s - .5, s - .5), w, w, linewidth=1.5, edgecolor="white", facecolor="none") ax.add_patch(rect) plt.title(title) plt.tight_layout() plt.savefig(path, dpi=300) plt.close() def compute_and_save_diagnostics(model: BaPSTO, loader: DataLoader, tag: str): """ • 计算三个内部指标并保存 csv • 绘制五张图 (C heatmap, t-SNE / UMAP, Laplacian spectrum, Silhouette bars, Gate heatmap(opt)) """ print(f"[Diag] computing metrics ({tag}) ...") timestamp = get_timestamp() Q, Yc, Ysub = _collect_Q_labels(model, loader) # ========== 1) 聚类指标 ========== # sil = silhouette_score(Q, Ysub, metric="cosine") ch = calinski_harabasz_score(Q, Ysub) db = davies_bouldin_score(Q, Ysub) pd.DataFrame( {"tag":[tag], "silhouette":[sil], "calinski":[ch], "davies":[db]} ).to_csv(DIAG_DIR / f"cluster_metrics_{tag}_{timestamp}.csv", index=False) # ========== 2) C heatmap & Laplacian ========== # GRAPH_LEVEL = 'coarse' # ← 这里换 'sub' 就看细粒度--------------------------------------------------- # ① —— 相似度矩阵(始终基于所有样本,用来画热力图) —— # P_all = Q @ Q.T / np.linalg.norm(Q, axis=1, keepdims=True) / np.linalg.norm(Q, axis=1)[:, None] np.fill_diagonal(P_all, -1e4) # 取消自环 C_heat = torch.softmax(torch.tensor(P_all), dim=1).cpu().numpy() # —— 画热力图:完全沿用旧逻辑,不受 GRAPH_LEVEL 影响 —— # order = np.lexsort((Ysub, Yc)) # 先 coarse 再 sub #order = np.argsort(Yc) # 只按粗类别拍平---------------------- # —— 计算每个 coarse-class 的起止行(列) —— # coarse_sorted = Yc[order] bounds = [] # [(start,end),...] start = 0 for i in range(1, len(coarse_sorted)): if coarse_sorted[i] != coarse_sorted[i-1]: bounds.append((start, i)) # [start, end) start = i bounds.append((start, len(coarse_sorted))) # —— 绘图,并把边界传给 boxes 参数 —— # _plot_heatmap(C_heat[order][:, order], f"C heatmap ({tag})", DIAG_DIR / f"C_heatmap_{tag}_{timestamp}.png", boxes=bounds) # ② —— 针对 Laplacian 的图,可选按 coarse/sub 屏蔽 —— # P_graph = P_all.copy() # 从全局矩阵复制一份 if GRAPH_LEVEL == 'coarse': P_graph[Yc[:, None] != Yc[None, :]] = -1e4 # 只留同 coarse 的边 elif GRAPH_LEVEL == 'sub': P_graph[Ysub[:, None] != Ysub[None, :]] = -1e4 # 只留同子簇的边 C_graph = torch.softmax(torch.tensor(P_graph), dim=1).cpu().numpy() D = np.diag(C_graph.sum(1)) L = D - (C_graph + C_graph.T) / 2 eigs = np.sort(np.linalg.eigvalsh(L))[:30] plt.figure(); plt.plot(eigs, marker='o') plt.title(f"Laplacian spectrum ({GRAPH_LEVEL or 'global'} | {tag})") plt.tight_layout() plt.savefig(DIAG_DIR / f"laplacian_{tag}_{timestamp}.png", dpi=300); plt.close() # ========== 3) t-SNE / UMAP (带图例 & 色彩 ≤20) ========== # warnings.filterwarnings("ignore", message="n_jobs value 1") focus_cls = 1#None # ← 若只看 coarse ID=3,把它改成 3 sel = slice(None) if focus_cls is None else (Yc == focus_cls) Q_sel, Ysub_sel = Q[sel], Ysub[sel] # -- 选 UMAP 或 t-SNE -- if HAS_UMAP: # :contentReference[oaicite:2]{index=2} reducer_cls = umap.UMAP if hasattr(umap, "UMAP") else umap.umap_.UMAP reducer = reducer_cls(n_neighbors=30, min_dist=0.1, random_state=CFG.seed) method = "UMAP" else: reducer = TSNE(perplexity=30, init="pca", random_state=CFG.seed) method = "t-SNE" emb = reducer.fit_transform(Q_sel) # (N,2) # ---------- scatter ---------- # unique_sub = np.unique(Ysub_sel) try: # 新版 Matplotlib (≥3.7) cmap = plt.get_cmap("tab20", min(len(unique_sub), 20)) except TypeError: # 旧版 Matplotlib (<3.7) cmap = plt.cm.get_cmap("tab20", min(len(unique_sub), 20)) plt.figure(figsize=(5, 5)) for i, s_id in enumerate(unique_sub): pts = Ysub_sel == s_id plt.scatter(emb[pts, 0], emb[pts, 1], color=cmap(i % 20), s=6, alpha=0.7, label=str(s_id) if len(unique_sub) <= 20 else None) if len(unique_sub) <= 20: plt.legend(markerscale=2, bbox_to_anchor=(1.02, 1), borderaxespad=0.) title = f"{method} ({tag})" if focus_cls is None else f"{method} cls={focus_cls} ({tag})" plt.title(title) plt.tight_layout() plt.savefig(DIAG_DIR / f"embed_{tag}_{timestamp}.png", dpi=300) plt.close() # ========== 4) Silhouette bars ========== # sil_samples = silhouette_samples(Q, Ysub, metric="cosine") order = np.argsort(Ysub) plt.figure(figsize=(6,4)) plt.barh(np.arange(len(sil_samples)), sil_samples[order], color="steelblue") plt.title(f"Silhouette per sample ({tag})"); plt.xlabel("coefficient") plt.tight_layout(); plt.savefig(DIAG_DIR / f"silhouette_bar_{tag}_{timestamp}.png", dpi=300); plt.close() print(f"[Diag] saved to {DIAG_DIR}") def create_dataloaders() -> Tuple[DataLoader, DataLoader, int]: """Load train/val as ImageFolder and return dataloaders + K_C.""" train_dir = Path(CFG.data_root) / "train" val_dir = Path(CFG.data_root) / "test" classes = sorted([d.name for d in train_dir.iterdir() if d.is_dir()]) K_C = len(classes) transform_train = transforms.Compose( [ transforms.Grayscale(num_output_channels=3), transforms.Resize((CFG.img_size, CFG.img_size)), transforms.RandomHorizontalFlip(), transforms.RandomRotation(10), transforms.RandomResizedCrop(CFG.img_size, scale=(0.8, 1.0)), transforms.ToTensor(), transforms.Normalize(mean=[0.5] * 3, std=[0.5] * 3), ] ) transform_val = transforms.Compose( [ transforms.Grayscale(num_output_channels=3), transforms.Resize((CFG.img_size, CFG.img_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.5] * 3, std=[0.5] * 3), ] ) train_ds = datasets.ImageFolder(str(train_dir), transform=transform_train) val_ds = datasets.ImageFolder(str(val_dir), transform=transform_val) train_loader = DataLoader( train_ds, batch_size=CFG.batch_size, shuffle=True, num_workers=CFG.num_workers, pin_memory=True, drop_last=True, ) val_loader = DataLoader( val_ds, batch_size=CFG.batch_size, shuffle=False, num_workers=CFG.num_workers, pin_memory=True, ) return train_loader, val_loader, K_C # -------------------------- Main training routine -------------------------- # def train(): best_ckpt_path = None # 记录最佳 joint 权重的完整文件名 best_acc = 0.0 best_epoch = -1 train_loader, val_loader, K_C = create_dataloaders() model = BaPSTO(K_C).to(CFG.device) model.steps_per_epoch = len(train_loader) #print(model) mb = MemoryBank(dim=CFG.d_proj, size=CFG.mem_size) warmup_weights_path = Path(CFG.save_root) / "bapsto_warmup_complete.pth" # 检查是否存在预保存的warm-up权重 if warmup_weights_path.exists(): print(f"找到预训练的warm-up权重,正在加载: {warmup_weights_path}") checkpoint = torch.load(warmup_weights_path, map_location=CFG.device,weights_only=True) model.load_state_dict(checkpoint["state_dict"]) print("✓ 成功加载warm-up权重,跳过warm-up阶段!") else: # ---------- Phase 1: DASSER warm‑up (backbone frozen) ---------- # print("\n==== Phase 1 | DASSER warm‑up ====") for p in model.backbone.parameters(): p.requires_grad = False # —— 冻结 prototypes 和 gate_logits —— # model.prototypes.requires_grad = False model.log_alpha.requires_grad = False # —— 冻结 prototypes 和 gate_logits —— # optimizer = optim.AdamW( filter(lambda p: p.requires_grad, model.parameters()), lr=CFG.lr_warmup, weight_decay=CFG.weight_decay, betas=(0.9, 0.95), ) scheduler = CosineAnnealingLR(optimizer, T_max=len(train_loader) * CFG.n_epochs_warmup) for epoch in range(CFG.n_epochs_warmup): run_epoch(train_loader, model, mb, optimizer, scheduler, epoch, phase="warmup") # 保存warm-up完成后的权重 torch.save( {"epoch": CFG.n_epochs_warmup, "state_dict": model.state_dict()}, warmup_weights_path ) print(f"✓ Warm-up完成,模型权重已保存至: {warmup_weights_path}") # after warm‑up loop, before Phase 2 header kmeans_init(model, train_loader) # <─ 新增 print("K‑means initialisation done. Prototypes are now ready.") compute_and_save_diagnostics(model, train_loader, tag="after_kmeans") # ---------- Phase 2: Joint optimisation (all params trainable) ---------- # print("\n==== Phase 2 | Joint optimisation ====") for p in model.backbone.parameters(): p.requires_grad = True # —— 解冻 prototypes 和 gate logits —— # model.prototypes.requires_grad = True model.log_alpha.requires_grad = True # —— 解冻 prototypes 和 gate logits —— # param_groups = [ {"params": [p for n,p in model.named_parameters() if n!='log_alpha'], "lr": CFG.lr_joint}, {"params": [model.log_alpha], "lr": CFG.lr_joint * 2.0} ] optimizer = optim.AdamW( param_groups, weight_decay=CFG.weight_decay, betas=(0.9, 0.95), ) scheduler = CosineAnnealingLR(optimizer, T_max=len(train_loader) * CFG.n_epochs_joint) best_acc = 0.0 best_epoch = -1 epochs_no_improve = 0 for epoch in range(CFG.n_epochs_joint): stats = run_epoch(train_loader, model, mb, optimizer, scheduler, epoch, phase="joint") # ─────────────────────────────────────────── if (epoch + 1) % 1 == 0: # 每个 epoch 都跑验证 # —— 每 5 个 epoch 额外保存 Gate & 聚类诊断 —— # if (epoch + 1) % 5 == 0: timestamp = get_timestamp() gate_prob = torch.sigmoid(model.log_alpha.detach().cpu()) _plot_heatmap( gate_prob, f"Gate prob (ep{epoch+1})", DIAG_DIR / f"gate_ep{epoch+1}_{timestamp}.png", ) compute_and_save_diagnostics( model, train_loader, tag=f"joint_ep{epoch+1}" ) # ---------- 统计指标 ---------- val_loss, val_acc, per_cls_acc, auc = metrics_on_loader(val_loader, model) train_acc = metrics_on_loader (train_loader, model)[1] # 只取整体训练准确率 print(f"[Val] ep {epoch+1:02d} | loss {val_loss:.3f} | " f"acc {val_acc:.3f} | train-acc {train_acc:.3f} |\n" f" per-cls-acc {np.round(per_cls_acc, 2)} |\n" f" AUC {np.round(auc, 2)}") # —— checkpoint —— # if val_acc > best_acc: best_acc = val_acc best_epoch = epoch epochs_no_improve = 0 best_ckpt_path = save_ckpt(model, epoch, tag="best_joint", acc=val_acc, optimizer=optimizer, scheduler=scheduler) # ← 传进去 else: epochs_no_improve += 1 # —— gate 修剪 —— # if epoch+1 >= 10: # 先训练 10 个 epoch 再剪 prune_gates(model, threshold=0.25, min_keep=1, hc_threshold=CFG.hc_threshold) # —— early stopping —— # if epochs_no_improve >= 50: print("Early stopping triggered in joint phase.") break # ─────────────────────────────────────────── model.global_step += 1 print(model.prototypes.grad.norm()) # 非零即可证明 L_proto 对原型确实有更新压力 model.global_step.zero_() # Joint训练结束后,重命名最佳模型文件,添加准确率 best_acc_int = round(best_acc * 1e4) # 将0.7068转换为7068 joint_ckpt_path = Path(CFG.save_root) / "bapsto_best_joint.pth" renamed_path = Path(CFG.save_root) / f"bapsto_best_joint_{best_acc_int}.pth" if joint_ckpt_path.exists(): joint_ckpt_path.rename(renamed_path) best_ckpt_path = renamed_path # ★ 同步路径,供 fine-tune 使用 print(f"✓ 最优联合训练模型已重命名: {renamed_path.name} " f"(epoch {best_epoch+1}, ACC: {best_acc:.4f})") # ---------- Phase 3: Fine‑tune (prototypes & gates frozen) ---------- # print("\n==== Phase 3 | Fine‑tuning ====") best_ft_acc = 0.0 best_ft_epoch = -1 # 若有最佳 joint 权重则加载 if best_ckpt_path is not None and Path(best_ckpt_path).exists(): ckpt = torch.load(best_ckpt_path, map_location=CFG.device, weights_only=True) model.load_state_dict(ckpt["state_dict"]) epoch_loaded = ckpt["epoch"] + 1 # 以 1 为起点的人类可读轮次 acc_loaded = ckpt.get("acc", -1) # 若早期代码没存 acc,给个占位 print(f"✓ loaded best joint ckpt (epoch {epoch_loaded}, ACC {acc_loaded:.4f})") else: print("⚠️ best_ckpt_path 未找到,继续沿用上一轮权重。") for param in [model.prototypes, model.log_alpha]: param.requires_grad = False for p in model.parameters(): if p.requires_grad: p.grad = None # clear any stale gradients optimizer = optim.AdamW( filter(lambda p: p.requires_grad, model.parameters()), lr=CFG.lr_ft, weight_decay=CFG.weight_decay, betas=(0.9, 0.95), ) scheduler = CosineAnnealingLR(optimizer, T_max=len(train_loader) * CFG.n_epochs_ft) for epoch in range(CFG.n_epochs_ft): run_epoch(train_loader, model, mb, optimizer, scheduler, epoch, phase="finetune") if (epoch + 1) % 1 == 0: # 每个 epoch 都评估 val_acc = evaluate(val_loader, model) print(f"[FT] ep {epoch+1:02d} | acc {val_acc:.4f}") # ① 按 epoch 保存快照(可选) save_ckpt(model, epoch, tag="ft") # ② 维护 “fine-tune 最佳” if val_acc > best_ft_acc: best_ft_acc = val_acc best_ft_epoch = epoch best_ft_acc_int = round(best_ft_acc * 1e4) # 将0.7068转换为7068 best_ft_ckpt_path = Path(CFG.save_root) / f"bapsto_best_ft_{best_ft_acc_int}.pth" save_ckpt(model, epoch, tag="best_ft", acc=val_acc) # 只保留一个最新 best_ft # 重命名保存文件 if best_ft_ckpt_path.exists(): best_ft_ckpt_path.rename(best_ft_ckpt_path) print(f"✓ Fine-tune最佳模型已重命名: {best_ft_ckpt_path.name} (epoch {best_ft_epoch+1}, ACC: {best_ft_acc:.4f})") print(f"Training completed. Best FT ACC {best_ft_acc:.4f}") # -------------------------- Helper functions -------------------------- # def run_epoch(loader, model, mem_bank: MemoryBank, optimizer, scheduler, epoch, phase:str): model.train() running = {"loss": 0.0} use_bpgs = (phase != "warmup") for step, (x, y) in enumerate(loader): x, y = x.to(CFG.device), y.to(CFG.device) optimizer.zero_grad() loss, stats, p_det, q_det = model(x, y, mem_bank, use_bpgs=use_bpgs) loss.backward() optimizer.step() scheduler.step() mem_bank.enqueue(p_det, q_det, y.detach()) # accumulate for k, v in stats.items(): running[k] = running.get(k, 0.0) + v # ★★★★★ Hard-Concrete 梯度健康检查 ★★★★★ if phase == "joint" and step % 100 == 0: # ─── Hard-Concrete 监控 ─── tau_now = max( CFG.tau_min_hc, CFG.tau0_hc - (CFG.tau0_hc - CFG.tau_min_hc) * min(1.0, model.global_step.item() / (model.steps_per_epoch * CFG.anneal_epochs_hc)) ) pa = torch.sigmoid(model.log_alpha) # (C,K) p_act = pa.mean().item() alive = (pa > 0.4).float().sum().item() # 0.4 与 prune 阈值一致 total = pa.numel() # = C × K grad_nm = (model.log_alpha.grad.detach().norm().item() if model.log_alpha.grad is not None else 0.0) pa = torch.sigmoid(model.log_alpha) print(f"[DBG] τ={tau_now:.3f} p̄={pa.mean():.3f} " f"min={pa.min():.2f} max={pa.max():.2f} " f"alive={(pa>0.25).sum().item()}/{pa.numel()} " f"‖∇α‖={grad_nm:.2e}") # ★★★★★ 监控段结束 ★★★★★ if (step + 1) % 50 == 0: avg_loss = running["loss"] / (step + 1) print( f"Epoch[{phase} {epoch+1}] Step {step+1}/{len(loader)} | " f"loss: {avg_loss:.4f}", end="\r", ) # epoch summary print(f"Epoch [{phase} {epoch+1}]: " + ', '.join(f"{k}: {running[k]:.4f}" for k in running)) return running @torch.no_grad() def evaluate(loader, model): model.eval() total_correct, total_samples = 0, 0 K_C, K_M = model.prototypes.size(0), model.prototypes.size(1) gate_hard = (model.log_alpha > 0).float() # (K_C,K_M) for x, y in loader: x, y = x.to(CFG.device), y.to(CFG.device) b = x.size(0) # --- 特征 & 距离 --- q = L2_normalise(model.g_FV(model.backbone(x))) # (b,d_p) d = ((q.unsqueeze(1).unsqueeze(2) - model.prototypes.unsqueeze(0))**2).sum(-1) # (b,K_C,K_M) s = 30.0 # scale for logits # --- 子簇 logit & 粗 logit --- mask_logits = -d * s + torch.log(gate_hard + 1e-12) # (b,K_C,K_M) # 这里由于是log,所以二者相加 coarse_logits = torch.logsumexp(mask_logits, dim=2) # (b,K_C) # --- 统计准确率 --- total_correct += coarse_logits.argmax(1).eq(y).sum().item() total_samples += b return total_correct / total_samples @torch.no_grad() def metrics_on_loader(loader, model): """ 返回: loss_avg – 均值交叉熵 acc – overall top-1 per_cls_acc (C,) – 每个 coarse 类别准确率 auc (C,) – 每类 one-vs-rest ROC-AUC """ model.eval() n_cls = model.prototypes.size(0) total_loss, total_correct, total_samples = 0., 0, 0 # —— 用来存储全量 logits / labels —— # logits_all, labels_all = [], [] ce_fn = nn.CrossEntropyLoss(reduction="sum") # 累加再除 for x, y in loader: x, y = x.to(CFG.device), y.to(CFG.device) # 前向 with torch.no_grad(): q = L2_normalise(model.g_FV(model.backbone(x))) d = ((q.unsqueeze(1).unsqueeze(2) - model.prototypes.unsqueeze(0))**2).sum(-1) logits = torch.logsumexp(-d*30 + torch.log((model.log_alpha>0).float()+1e-12), dim=2) total_loss += ce_fn(logits, y).item() total_correct += logits.argmax(1).eq(y).sum().item() total_samples += y.size(0) logits_all.append(logits.cpu()) labels_all.append(y.cpu()) # —— overall —— # loss_avg = total_loss / total_samples acc = total_correct / total_samples # —— 拼接 & 转 numpy —— # logits_all = torch.cat(logits_all).numpy() labels_all = torch.cat(labels_all).numpy() # —— per-class ACC —— # per_cls_acc = np.zeros(n_cls) for c in range(n_cls): mask = labels_all == c if mask.any(): per_cls_acc[c] = (logits_all[mask].argmax(1) == c).mean() # —— per-class AUC —— # try: from sklearn.metrics import roc_auc_score prob = torch.softmax(torch.from_numpy(logits_all), dim=1).numpy() auc = roc_auc_score(labels_all, prob, multi_class="ovr", average=None) except Exception: # 组数太少或只有 1 类样本时会报错 auc = np.full(n_cls, np.nan) return loss_avg, acc, per_cls_acc, auc def save_ckpt(model, epoch:int, tag:str, acc:float|None=None, optimizer=None, scheduler=None): """ 通用保存函数 • 返回 ckpt 文件完整路径,方便上层记录 • 可选把 opt / sched state_dict 一起存进去,便于 resume """ save_dir = Path(CFG.save_root) save_dir.mkdir(parents=True, exist_ok=True) # -------- 路径策略 -------- # if tag == "best_joint": # 只保留一个最新最优 joint ckpt_path = save_dir / "bapsto_best_joint.pth" else: # 其他阶段带时间戳 ckpt_path = save_dir / f"bapsto_{tag}_epoch{epoch+1}_{get_timestamp()}.pth" # -------- 组装 payload -------- # # • vars(CFG) 可以拿到用户自己在 CFG 里写的字段 # • 再过滤掉 __ 开头的内部键、防止把 Python meta-data 也 dump 进去 cfg_dict = {k: v for k, v in vars(CFG).items() if not k.startswith("__")} payload = { "epoch": epoch, "state_dict": model.state_dict(), "cfg": cfg_dict, # ← 改在这里 } if acc is not None: payload["acc"] = acc if optimizer is not None: payload["optimizer"] = optimizer.state_dict() if scheduler is not None: payload["scheduler"] = scheduler.state_dict() torch.save(payload, ckpt_path) print(f"✓ checkpoint saved to {ckpt_path}") return ckpt_path @torch.no_grad() def prune_gates(model: BaPSTO, threshold=0.05, min_keep=2, hc_threshold=0.35): """ Disable sub-clusters whose mean gate probability < threshold. After setting them to -10, we do another **row normalization**: Each coarse class row is subtracted by the max logit of that row, ensuring the maximum logit for active clusters is 0 and inactive clusters ≈ -10 → softmax(-10) ≈ 0. Also check for Hard-Concrete (HC) weights below a threshold (e.g., 0.35) to disable sub-clusters. """ # softmax probabilities (K_C, K_max) p_active = torch.sigmoid(model.log_alpha) # Activation probability mask = (p_active < threshold) # Check HC thresholds and disable low weight clusters low_weight_mask = (p_active < hc_threshold) # Find sub-clusters with low HC weight mask = mask | low_weight_mask # Combine with existing mask # Ensure at least `min_keep` sub-clusters are kept per coarse class keep_mask = (mask.cumsum(1) >= (CFG.K_max - min_keep)) mask = mask & ~keep_mask pruned = mask.sum().item() if pruned == 0: return model.log_alpha.data[mask] = -10.0 # Set log_alpha of pruned sub-clusters to a very low value print(f"Pruned {pruned} sub-clusters (ḡ<{threshold}, keep≥{min_keep}/class)") # Reassign samples from pruned sub-clusters to active sub-clusters if pruned > 0: # Find the indices of the pruned sub-clusters pruned_clusters = mask.sum(dim=1) > 0 # (K_C,) for c in range(model.prototypes.size(0)): # Loop through each coarse class if pruned_clusters[c]: pruned_indices = mask[c] # Get indices of pruned sub-clusters for class `c` active_indices = ~pruned_indices # Get indices of active sub-clusters active_prototypes = model.prototypes[c][active_indices] # Get active prototypes q = model.q # Get features # Reassign samples from pruned clusters to active clusters d_active = pairwise_cosine(q, active_prototypes) # Compute distance to active prototypes best_active = d_active.argmin(dim=1) # Assign samples to the nearest active sub-cluster # Update the model with reallocated samples (you can implement reallocation logic here) print(f"Reassigning samples from pruned sub-clusters of class {c} to active clusters.") # -------------------------- Entrypoint -------------------------- # if __name__ == "__main__": os.makedirs(CFG.save_root, exist_ok=True) start = time.time() train() print(f"Total runtime: {(time.time() - start) / 3600:.2f} h") 逐行详细解释代码
最新发布
09-05
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值